
www.waves.com

Controlling apples
with snakes!

Automating mobile apps with Appium

Nir Arad
@nirarad1 #pycon2018

MANUAL TESTING

ABOUT MYSELF

• Studied sound engineering

• Working at Waves Audio for the

past 10 years

• Moved from manual QA testing to

writing automated tests in Python

AUDIO PLUGINS

AUDIO PLUGINS

WHY USE AUTOMATED TESTING?

Test all of these every day!!

BENEFITS OF AUTOMATED TESTING

• Save time - immediate results, 24/7

• Speed - Runs faster than humans

• Accuracy - Tests run always the same

• Reusable - Same test across all platforms

• Increase Coverage - Faster releases

Transfer our testing facilities from desktop to iOS

THE CHALLENGE

TESTING AS A 3RD PARTY
DEVELOPER

• Used for creating a distinct IDs for an App

• Manual testing

• Only supports real devices

• Doesn’t support Python

by

• Supports both real and emulated devices

• Can automate native, web, and hybrid apps

• Works in Python

• Open source

machine running
the test

Appium server
(Node.JS)

JSON protocol XCUITest

UiAutomator

WRAPPING NATIVE MOBILE OS
FRAMEWORKS

instruments
controller

(iOS)

instruments
command

server

Unix socket server

def login():
 driver.get(self.url)
 element =
driver.find_element_by_id(”usrname")
 element.send_keys(self.user)
 element =
driver.find_element_by_id(“psw")
 element.send_keys(self.password)
 driver.find_element_by_id("login-
btn").click()

instruments
command

client

Unix socket client

bootstrap.js

WebDriver controller

Instruments
app

iOS INSTRUMENTS

Pros: 
More stable 
Real device performance

Cons: 

Expensive 
Slower response time 
Needs to be updated, can break

Pros: 
Faster (no data transfer) 
Easier to maintain 
Free 
Concurrent run (Android only)

Cons: 
Less stable 
Not the real thing

Real device Emulated device

•Sessions are defined by desired capabilities

•Each test uses a different session

•When starting a session Appium will copy the application on the the device and launch it

SESSION CONTEXT

First we define basic information for the test
APPIUM_PORT = '4723'
udid = 'fe90948c2cb66edaa61bc977137e66d61854e53f'
app_path = ‘/Applications/iOSPluginTester.app'

command_executor = 'http://127.0.0.1:%s/wd/hub' % APPIUM_PORT

Then we define a dictionary for Appium
desired_capabilities = {'orientation': 'LANDSCAPE',
 'app': app_path,
 'platformName': "iOS",
 'newCommandTimeout': 240,
 'platformVersion': "11.0",
 'deviceName': "Automation",
 'udid': udid}

Finally we create a web driver instance
from appium import webdriver
driver = webdriver.Remote(command_executor,
 desired_capabilities)

Instantiating a WebDriver object

FINDING ELEMENTS USING WebDriver

Appium supports a subset of the WebDriver locator strategies:

• Class name

• accessibility ID

• Name

• XPath

APPIUM DESKTOP

Reference build

New build

IMAGE COMPARISON TEST

Diff image

Inverted diff

IMAGE COMPARISON TEST

Reference build

New build

IMAGE COMPARISON TEST

Find the button element for the plugins menu
plugin_menu = driver.find_element_by_accessibility_id("Select Plugin")

Open the menu
plugin_menu.click()

Find all plugin elements
element_type = "//XCUIElementTypeButton"
plugins = driver.find_elements_by_xpath(element_type)

Iterate through all plugins and take a screenshot
for plugin_button in plugins:
 plugin_button.click()
 driver.get_screenshot_as_file(image_path)
 compare_images(image_path, ref_image_path)

 # Open the menu again for the next iteration
 plugin_menu.click()

Close the web driver
driver.quit()

THE TEST CODE

from PIL import Image

def compare_images(ref_img_file_path, new_img_file_path, diff_img, comb_img):
 ref_img_obj = Image.open(ref_img_file_path)
 new_img_obj = Image.open(new_img_file_path)
 ref_img_mtx = ref_img_obj.load()
 new_img_mtx = new_img_obj.load()
 # Creating a new black image
 diff_img_obj = Image.new('RGB', (ref_img_obj.size[0], ref_img_obj.size[1]))

 diff_pixels = 0
 for col in range(ref_img_obj.size[0]): # Iterating over rows
 for row in range(ref_img_obj.size[1]): # Iterating over columns

 if ref_img_mtx[col, row][0:3] != new_img_mtx[col, row][0:3]:
 diff_pixels += 1

 # Painting over the tested image with an inverted color
 p = ref_img_mtx[col, row] # Pixel tuple (R, G, B)
 new_img_obj.putpixel((col, row), (255 - p[0], 255 - p[1], 255 - p[2]))

 # Painting a green pixel on the black image
 diff_img_obj.putpixel((col, row), (0, 255, 0))

 # Saving the inverted colors image
 new_img_obj.save(comb_img)
 diff_img_obj.save(diff_img)
 return diff_pixels

Plugin name Component Status Diff image Combined image

1 Q10 Stereo 9389 pixels different Diff Comb

2 AudioTrack Stereo Pass

3 L1+Ultramaximizer Stereo Pass

iOS PluginTester 05/05/18 16:48
Test summary (see log file for more info): 1 FAILURE(s)

GUI Verification

TEST RESULTS

applewebdata://A6172FD0-DA81-4496-AAF1-8EA7E621B764/screenshots/Q10_Stereo_diff.png
applewebdata://A6172FD0-DA81-4496-AAF1-8EA7E621B764/screenshots/Q10_Stereo_comb.png

DEMO

•TouchAction objects contain a chain of events

•They simulate user actions on the touch screen

AUTOMATING MOBILE GESTURES

Element based actions
TouchAction().press(el0).moveTo(el1).release()

Positional based actions

.press(100,100) # Start at 100,100
.moveTo(100,100) # Increase X & Y by 100 each,
ending up at 200,200

TouchAction MOBILE GESTURES

• press

• release

•moveTo

• tap

•wait

• longPress

• cancel

• perform

The available events from the spec are:

MultiAction MOBILE GESTURES

• MultiTouch objects are collections of TouchActions.

• MultiTouch gestures only have two methods, add, and perform.

action0 = TouchAction().tap(el)
action1 = TouchAction().tap(el)
MultiAction().add(action0).add(action1).perform()

DEMO

• You shouldn’t have to recompile your app or

modify it in any way in order to automate it

• You shouldn’t be locked into a specific language

or framework to write and run your tests

• A mobile automation framework shouldn’t reinvent

the wheel when it comes to automation APIs

• A mobile automation framework should be open

source, in spirit and practice as well as in name

APPIUM PHILOSOPHY

• Divide your tests into small chunks

• Choose tests that take a long time to complete manually

• Test reference data (images, audio files) have to be
updated with the product

• Not every test is suitable as automated test

FINAL TIPS

Automated testing is
an insurance policy

Nir Arad

nir.arad@gmail.com

@nirarad1 #pycon2018

Thank you

Links and sources:

http://appium.io

https://nishantverma.gitbooks.io/appium-for-android - Nishant Verma

https://medium.com/@dmathewwws/steps-to-put-your-app-on-testflight-and-

then-the-ios-app-store-10a7996411b1 - Daniel Mathews

http://www.waves.com

mailto:nir.arad@gmail.com
http://appium.io
https://nishantverma.gitbooks.io/appium-for-android/
https://medium.com/@dmathewwws/steps-to-put-your-app-on-testflight-and-then-the-ios-app-store-10a7996411b1
https://medium.com/@dmathewwws/steps-to-put-your-app-on-testflight-and-then-the-ios-app-store-10a7996411b1
http://www.waves.com

