
Lynn Root | SRE | @roguelynn

Tracing: Fast & Slow
Digging into and improving your web
service’s performance

$ whoami

—

agenda
—

agenda

• Overview and problem space

—

agenda

• Overview and problem space
• Approaches to tracing

—

agenda

• Overview and problem space
• Approaches to tracing
• Tracing at scale

—

agenda

• Overview and problem space
• Approaches to tracing
• Tracing at scale
• Diagnosing performance issues

—

agenda

• Overview and problem space
• Approaches to tracing
• Tracing at scale
• Diagnosing performance issues
• Tracing services & systems

—

Tracing Overview
—

machine-centric

• Focus on a single machine

—

machine-centric

• Focus on a single machine
• No view into a service’s dependencies

—

workflow-centric

• Understand causal relationships

—

workflow-centric

• Understand causal relationships
• End-to-end tracing

—

why trace?
—

why trace?

• Performance analysis
—

why trace?

• Performance analysis
• Anomaly detection

—

why trace?

• Performance analysis
• Anomaly detection
• Profiling

—

why trace?

• Performance analysis
• Anomaly detection
• Profiling
• Resource attribution

—

why trace?

• Performance analysis
• Anomaly detection
• Profiling
• Resource attribution
• Workload modeling

—

Tracing Approaches
—

manual

def request_id(f):
 @wraps(f)
 def decorated(*args, **kwargs):
 req_id = request.headers.get(
 "X-Request-Id", uuid.uuid4())
 return f(req_id, *args, **kwargs)
 return decorated

@app.route("/")
@request_id
def list_services(req_id):
 # log w/ ID for wherever you want to trace
 # app logic

upstream appserver {
 10.0.0.0:80;
}

server {
 listen 80;
 # Return to client
 add_header X-Request-ID $request_id;
 location / {
 proxy_pass http://appserver;
 # Pass to app server
 proxy_set_header X-Request-ID $request_id;
 }
}

log_format trace '$remote_addr … $request_id';

server {
 listen 80;
 add_header X-Request-ID $request_id;
 location / {
 proxy_pass http://app_server;
 proxy_set_header X-Request-ID $request_id;
 # Log $request_id
 access_log /var/log/nginx/access_trace.log trace;
 }
}

blackbox

metadata propagation

Tracing at Scale
—

four things to think about
—

four things to think about

• What relationships to track

—

four things to think about

• What relationships to track
• How to track them

—

four things to think about

• What relationships to track
• How to track them
• Which sampling approach to take

—

four things to think about

• What relationships to track
• How to track them
• Which sampling approach to take
• How to visualize to employ

—

what to track

Request One

Request Two

Submitter Flow PoV

Request One

Request Two

Trigger Flow PoV

how to track

request ID

request ID +
logical clock

request ID +
logical clock +
previous trace points

tradeoffs
—

tradeoffs

• Payload size

—

tradeoffs

• Payload size
• Explicit relationships

—

tradeoffs

• Payload size
• Explicit relationships
• Collate despite lost data

—

tradeoffs

• Payload size
• Explicit relationships
• Collate despite lost data
• Immediate availability

—

how to sample

sampling approaches

• Head-based

—

sampling approaches

• Head-based
• Tail-based

—

sampling approaches

• Head-based
• Tail-based
• Unitary

—

what to visualize

gantt chart
—

GET /home

GET /feed

GET /profile

GET /messages

GET /friends

Trace ID: de4db33f

—
request flow graph

A call

B call

C call

C call

D call

E call E reply

D reply

B reply

C reply

C reply A reply

2200µs

1500µs

500µs

300µs

400µs 600µs

800µs

500µs

500µs

700µs

500µs

400µs

600µs

100µs

—
context calling tree

A

B

C

C

D

E

keep in mind

• What do I want to know?

—

keep in mind

• What do I want to know?
• How much can I instrument?

—

keep in mind

• What do I want to know?
• How much can I instrument?
• How much do I want to know?

—

suggested for performance
—

suggested for performance
—

• Trigger PoV

suggested for performance
—

• Trigger PoV
• Head-based sampling

suggested for performance
—

• Trigger PoV
• Head-based sampling
• Flow graphs

Diagnosing
—

questions to ask
—

• Batch requests?

questions to ask

• Batch requests?
• Any parallelization opportunities?

—

questions to ask

• Batch requests?
• Any parallelization opportunities?
• Useful to add/fix caching?

—

questions to ask

• Batch requests?
• Any parallelization opportunities?
• Useful to add/fix caching?
• Frontend resource loading?

—

questions to ask

• Batch requests?
• Any parallelization opportunities?
• Useful to add/fix caching?
• Frontend resource loading?
• Chunked or JIT responses?

—

Systems & Services
—

OpenTracing

self-hosted

Zipkin (Twitter)
—

Zipkin (Twitter)

• Out-of-band reporting to remote collector

—

Zipkin (Twitter)

• Out-of-band reporting to remote collector
• Report via HTTP, Kafka, and Scribe

—

Zipkin (Twitter)

• Out-of-band reporting to remote collector
• Report via HTTP, Kafka, and Scribe
• Python libs only support propagation via HTTP

—

Zipkin (Twitter)

• Out-of-band reporting to remote collector
• Report via HTTP, Kafka, and Scribe
• Python libs only support propagation via HTTP
• Limited web UI

—

def http_transport(span_data):
 requests.post(
 "http://zipkinserver:9411/api/v1/spans",
 data=span_data,
 headers={"Content-type": "application/x-thrift"})

@app.route("/")
def index():
 with zipkin_span(service_name="myawesomeapp",
 span_name="index",
 # need to write own transport func
 transport_handler=http_transport,
 port=app_port,
 # 0-100 percent
 sample_rate=100):

 # do something

Jaeger (Uber)
—

Jaeger (Uber)

• Local daemon to collect & report

—

Jaeger (Uber)

• Local daemon to collect & report
• Storage support for only Cassandra

—

Jaeger (Uber)

• Local daemon to collect & report
• Storage support for only Cassandra
• Lacking in documentation

—

Jaeger (Uber)

• Local daemon to collect & report
• Storage support for only Cassandra
• Lacking in documentation
• Cringe-worthy client library

—

import opentracing as ot
config = Config(…)
tracer = config.initialize_tracer()

@app.route("/")
def index():
 with ot.tracer.start_span("ASpan") as span:
 span.log_event("test message", payload={"life": 42})

 with ot.tracer.start_span("AChildSpan", child_of=span) as cspan:
 span.log_event("another test message")

wat
time.sleep(2) # yield to IOLoop to flush the spans
tracer.close() # flush any buffered spans

honorable mentions

• AppDash
• LightStep (private beta)

—

services

Stackdriver Trace (Google)
—

Stackdriver Trace (Google)

• No Python client libraries; no gRPC client support

—

Stackdriver Trace (Google)

• No Python client libraries; no gRPC client support
• Forward traces from Zipkin

—

Stackdriver Trace (Google)

• No Python client libraries; no gRPC client support
• Forward traces from Zipkin
• Storage limitation of 30 days

—

X-Ray (AWS)
—

X-Ray (AWS)

• No first class Python support; Boto available

—

X-Ray (AWS)

• No first class Python support; Boto available
• Configurable sampling, but not for Boto

—

X-Ray (AWS)

• No first class Python support; Boto available
• Configurable sampling, but not for Boto
• Flow graphs with latency, response %, sample %

—

honorable mentions

• Datadog
• New Relic

—

TL;DR
—

tl;dr
—

• You need this

tl;dr
—

• You need this
• Docs are lacking

tl;dr
—

• You need this
• Docs are lacking
• Language support lacking

tl;dr
—

• You need this
• Docs are lacking
• Language support lacking
• One size fits all approaches

tl;dr
—

• You need this
• Docs are lacking
• Language support lacking
• One size fits all approaches
• But there’s an open spec!

Thanks!
—

Sources & links: rogue.ly/tracing

Lynn Root | SRE | @roguelynn

