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Tracing: Fast & Slow
Digging into and improving your web  
service’s performance
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why trace?

•  Performance analysis 
•  Anomaly detection 
•  Profiling 
•  Resource attribution 
•  Workload modeling
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Tracing Approaches
—



manual



def request_id(f):
    @wraps(f)
    def decorated(*args, **kwargs):
        req_id = request.headers.get(
            "X-Request-Id", uuid.uuid4())
        return f(req_id, *args, **kwargs)
    return decorated

@app.route("/")
@request_id
def list_services(req_id):
    # log w/ ID for wherever you want to trace
    # app logic



upstream appserver {
    10.0.0.0:80;
}

server {
    listen 80;
    # Return to client
    add_header X-Request-ID $request_id;  
    location / {
        proxy_pass http://appserver; 
        # Pass to app server
        proxy_set_header X-Request-ID $request_id;
    }
}



log_format trace '$remote_addr … $request_id';

server {
    listen 80;
    add_header X-Request-ID $request_id;
    location / {
        proxy_pass http://app_server;
        proxy_set_header X-Request-ID $request_id;
        # Log $request_id
        access_log /var/log/nginx/access_trace.log trace;
    }
}



blackbox



metadata propagation
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how to track



request ID
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sampling approaches

•  Head-based 
•  Tail-based 
•  Unitary
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what to visualize



gantt chart
—
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suggested for performance
—

•  Trigger PoV 
•  Head-based sampling 
•  Flow graphs
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questions to ask

•  Batch requests? 
•  Any parallelization opportunities? 
•  Useful to add/fix caching? 
•  Frontend resource loading? 
•  Chunked or JIT responses?
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Systems & Services
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OpenTracing



self-hosted
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Zipkin (Twitter)

•  Out-of-band reporting to remote collector 
•  Report via HTTP, Kafka, and Scribe 
•  Python libs only support propagation via HTTP 
•  Limited web UI

—



def http_transport(span_data):
    requests.post(
        "http://zipkinserver:9411/api/v1/spans",
        data=span_data, 
        headers={"Content-type": "application/x-thrift"})

@app.route("/")
def index():
    with zipkin_span(service_name="myawesomeapp",
                     span_name="index",
                     # need to write own transport func
                     transport_handler=http_transport,
                     port=app_port,
                     # 0-100 percent
                     sample_rate=100):

        # do something
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Jaeger (Uber)

•  Local daemon to collect & report 
•  Storage support for only Cassandra 
•  Lacking in documentation 
•  Cringe-worthy client library
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import opentracing as ot
config = Config(…)
tracer = config.initialize_tracer()

@app.route("/")
def index():
    with ot.tracer.start_span("ASpan") as span:
        span.log_event("test message", payload={"life": 42})

        with ot.tracer.start_span("AChildSpan", child_of=span) as cspan:
            span.log_event("another test message")

# wat
time.sleep(2)   # yield to IOLoop to flush the spans
tracer.close()  # flush any buffered spans



honorable mentions

•  AppDash 
•  LightStep (private beta)
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Stackdriver Trace (Google)

•  No Python client libraries; no gRPC client support 
•  Forward traces from Zipkin 
•  Storage limitation of 30 days
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X-Ray (AWS)

•  No first class Python support; Boto available 
•  Configurable sampling, but not for Boto 
•  Flow graphs with latency, response %, sample %

—



honorable mentions

•  Datadog 
•  New Relic

—



TL;DR
—



tl;dr
—

•  You need this



tl;dr
—

•  You need this 
•  Docs are lacking



tl;dr
—

•  You need this 
•  Docs are lacking 
•  Language support lacking



tl;dr
—

•  You need this 
•  Docs are lacking 
•  Language support lacking 
•  One size fits all approaches



tl;dr
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•  You need this 
•  Docs are lacking 
•  Language support lacking 
•  One size fits all approaches 
•  But there’s an open spec!



Thanks!
—

Sources & links: rogue.ly/tracing
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