
Jean-Baptiste Aviat

Writing a C Python extension in 2017

CO-FOUNDER & CTO at SQREEN

PyCon 2017, PDX

Jean-Baptiste Aviat

CTO @SqreenIO (https://sqreen.io) 
Former hacker at Apple (Red Team) 
Author of PyMiniRacer

@jbaviat - jb@sqreen.io

Who am I?

https://sqreen.io
mailto:jb@sqreen.io

Someday… we needed to use V8 from Python.

What we ship:
• is public
• is widely used
• need to be frictionless.

Agenda

The need for a binary Python extension
Available choices
Build it (and debug it)
Ship it!

PyMiniRacer: cool JS binding

The problem

V8 is C++
How do you run C++ in Python?

We need some kind of binding between these 2 worlds.

Who needs binaries anyway?

cryptography
numpy
pymongo
psycopg
simplejson
lxml
sqlalchemy…

many popular packages:

People do it! Let’s do it too.

What are our goals?

We want to:
• minimize maintenance
• make setup easy
• make testing easy
• have great performance
• have low memory fingerprint

And (obviously)…
• dev time is a constraint

built-in pythonic Python version
independant

open to other
languages

high
throughput

capable

CPython
✔ ✔ ✔

ctypes ✔ ✔ ✔

cffi ✔ ✔ ✔ ✔

Cython ✔ ✔

SWIG ✔ ✔

ctypes

Built into Python
Binary is Python independant:
• can be used on any version
• can be used in other languages!

No tight integration to Python
• not high throughput capable
• less Pythonic
Complex syntax (C types wrapped
in Python…)
Not for C++

👍 👎

$ python
>>> path = "./hello.so"
>>> import ctypes
>>> lib = ctypes.cdll.LoadLibrary(path)
>>> lib.hello_world()
Hello world!

C file

Python
interface

binary 
object

Build it

Overview

V8 (C++ interface)C interface to V8Python interface

3rd party binaries

import ctypes

class PyMiniRacer(object):
…

#include <v8.h>

int miniracer_init();
…

V8 library (libv8.a)
V8 headers (v8.h)

linkingctypes

C/C++ codePython library

How to put this together?

$ cat setup.py
from distutils.core import setup, Extension

extension = Extension('hello', ['hello.c'])
setup(name=‘hello',
 version='1.0',
 ext_modules=[extension])
$ python setup.py build
running build
running build_ext
building 'hello' extension
clang […] -c hello.c -o hello.o
creating build/lib.macosx-10.6-intel-2.7
clang -bundle […] hello.o -o hello.so

Crashes?

C stack trace

$ python run_me.py
Program terminated with signal
SIGSTOP, Aborted.

$ python run_me.py
 File "client.py", line 1227, in lpush
 return self.execute_command('LPUSH', name, *values)
 File "client.py", line 578, in execute_command
 connection.send_command(*args)
 File "connection.py", line 563, in send_command
 self.send_packed_command(self.pack_command(*args))
 File "connection.py", line 538, in send_packed_command
 self.connect()
 File "connection.py", line 442, in connect
 raise ConnectionError(self._error_message(e))
ConnectionError: Error 61 connecting to localhost:6379.
Connection refused.

Python stack trace

Debugging binaries

Generate core files in this way:

$ ulimit -c unlimited
$ python run_me.py
[1] 28653 abort (core dumped)
$ ls /cores/
-r-------- 1 jb admin 711M 4 april 01:48 core.12922

And just read it

$ lldb -c core.28653 (or gdb -c core.28653)
(lldb) bt
* thread #1, stop reason = signal SIGSTOP
 * frame #0: 0x0000106da8b0d mini_racer_extension.bundle`PyMiniRacer_eval_context(ContextInfo*, char*) + 125
 frame #1: 0x0000106da94ed mini_racer_extension.bundle`eval_context + 29
 frame #2: 0x07fff9673ff14 libffi.dylib`ffi_call_unix64 + 76
 frame #3: 0x07fff9674079b libffi.dylib`ffi_call + 923
 frame #4: 0x0000106d48723 _ctypes.so`_ctypes_callproc + 591
 frame #5: 0x0000106d42d44 _ctypes.so`PyCData_set + 2354
 frame #6: 0x000010688e202 Python`PyObject_Call + 99

$ ls /Library/Application\ Support/CrashReporter/

On OSX, you cal also check the crash reports here:

Python

Your C code

What C/C++ compiler are you using?

Memory leaks

Valgrind is your friend
$ valgrind ./myExtension

Python: 🙋
C: 😿
Calling a leaking C function from Python…

—> you’ll never get this memory back.

Rely on clang analyser
$ clang --analyze file.c
Warning: memory is never freed
Warning: condition is never true
[…]

Some title

Other memory issues

Valgrind is (again) your friend
 - use after free
 - non aligned accesses
 - uninitialized accesses

Use clang address sanitiser
$ clang --asan file.c
Warning: use after free
[…]

Taking checks to the next level

Rely on clang analyser
$ clang --analyze file.c
Warning: memory is never freed
Warning: condition is never true
[…]

Fuzz it!
American Fuzzy Lop: best fuzzer ever

http://lcamtuf.coredump.cx/afl/

Worth having it in
your build system!

That’s awesome… but do
everything else first.

Abuse the Python unit tests

Unit test in C is painful but cool in Python
Do rely on Python’s unit test capabilities:
• Test multithreading capabilities
• Test for memory leaks
• Test for performance & performance regressions

Ship it

Ever had trouble installing packages?

This packages rely on C/C++ code.
They need to build this code.
This is done during pip install.

Python packaging history

sdist (source distribution)
eggs
wheels
 —> manylinux wheels

(built distribution)

2004

2012
2016

Python 2.4

Python 3.3
Python 3.6 ❤

manylinux wheels

Python standard: PEP503
Compatible on most (real
world) Linux

Only in pip >= 8.1
Need to build on many
platforms 
Binaries need to be built on
 🚨🚨CentOS 5🚨🚨

👍 👎

Wheels or compiler?

Wheels
• iso builds (crash can be reproduced)
• you need to maintain many

packages

Compiler
• one build per user
• only one package
• but harder to install…

Many packages… How many?

Linux 32/64 (ARM?)
macOS 32/64
maybe Windows 32/64 (ARM?)

2.x 
3.5
3.6
3.7

• wide Unicode
• regular Unicode

3+1+1

2+2 } 20 wheels to
publish

Wheels or compiler?

Preferred way:
• pubish the wheels
• also publish the non compiled version
An you can do it lean…

Why CentOS 5?

A compiled program relies on 3rd party libraries:
• libc
• libstdc++
• …
a program compiled with libc 2.1 won’t run with libc 2.20
Yes: something built on Ubuntu 16 may not run on Ubuntu 14

Why CentOS 5 (again)?

One of the oldest libc that can be found
It is said mandatory by PEP503
• there is no need to comply
• but your wheels won’t be as compatible as possible

PEP503 provides CentOS 5 Dockerfile with Python versions
https://github.com/pypa/manylinux#docker-images

https://github.com/pypa/manylinux#docker-images

Testing binaries

The wheel was built on old Linux
Now let’s test it on other distributions.
Docker is will help:

$ for tag in 12.04 14.04 16.04; do
 docker run --rm ubuntu:${tag} bash -c "pip install mypkg; mypkg-tests »
 if [$? -ne 0]; then echo "Failure on ubuntu:${tag}"; fi
done;

Profit!

Questions?

