
Building	Bridges,	not	walls
Ending	Python2	compatibility	in	a	user	friendly

manner

M	Bussonnier	&	M	Pacer

Slides	available	at	https://short.url

https://short.url/


About	us
We	have	been	working	on	the	IPython	and	Jupyter	projects	for	5	and

~1	year.

github:@Carreau/twitter:@Mbussonn

github:@mpacer/twitter:@mdpacer



What	this	talk	is	not	about

Is	Python	2	or	3	the	right	choice?
Should	I	migrate	to	Python3-only?



What	this	talk	is	about

We	migrated	IPython	to	Python	3	only.

We	care	about	all	of	our	users,	Python	2	and	3	alike.

We	want	to	make	the	transition	the	least	frustrating	for	users	and
dev.

We'll	be	describing	how	we	did	this.



Python	2	vs	3	is	an	example

The	lessons	we've	learned	are	not	specific	a	python2	to	python3
transition.

Our	talk	applies	to	stopping	support	for	any	version	(e.g.,	2.6	or	3.3).



Python	3	Statement

List	of	who	is	stopping	Python	2	support	when.	Resources	on	how	to
stop	support	with	minimal	frustration	for	users

www.python3statement.org

http://www.python3statement.org/








Scratch	your	own	itch
We	released	IPython	6,	the	code	base	is	Python	3	only.

IPython	5	will	still	be	stable	(LTS).	So	if	a	Python	2	user	runs

it	should	install	the	latest	version	of	IPython	5,	not	IPython	6!

$ pip install ipython -U



Core	of	the	problem

$ pip install ipython --upgrade
Installing ipython... doing magic... success

$ python
>>> import IPython
SyntaxWarningErrorError("I Just don't like you.")



[Not	really]	Solutions
Let's	go	back	to	2016.



Just	use	$ pip install "ipython<6"	on	Python	2



Users	do	not	always	read	documentation	before	installing.
Scripts	do	not	read	documentation	before	installing.
Users/scripts	do	not	read	error	messages.
dependencies	–	all	packages	need	update	to	have	conditional
dependencies.



Rename	?

That's	going	to	be	confusing	and	void	most	of	the	documentation	on
the	Internet.

Import	names	different	from	package	name	is	also	a	bit	tricky	to
explain	sometime.



Wheel	only	?

Ok-ish	for	Pure-Python	packages.

Many	downstream	distribution	requires	sdist.



Use	a	metapackage

Use	a	package	with	virtually	no-code	that	have	conditional
dependencies,	and	move	the	"real"	code	to	a	sub	package.

You	kinda	need	to	re-release	old	code	(can't	requires	old-yourself)
pip upgrade metapackage	will	not	pull	core	unless	pinned	deps



use	a	pip	bug	"Hidden	Feature":

# somewhere in pip
_py_version_re = re.compile(r'-py([123]\.?[0-9]?)$')

# somewhere else
if is_tar_gz(file):
    match = self._py_version_re.search(version)
    if match:
        version = version[:match.start()]
        py_version = match.group(1)
        if py_version != sys.version[:3]:
            self._log_skipped_link(
                link, 'Python version is incorrect')
            return



use	a	pip	bug	"Hidden	Feature":

You	can	publish	ipython-py3.3.tar.gz	and	ipython-py3.4.tar.gz
and	ipython-py3.5.tar.gz	and	ipython-py3.6.tar.gz	and	ipython-

py3.7.tar.gz	to	be	future	proof.

But	it	does	not	work	beyond	Python	3.9...



As	Raymond	Hettinger	would	say	if	he	is	in	the	room

There	must	be	a	better	way	!



The	new*	way:	Python-
Requires

Since	December	with	pip	9.0.1,	and	setuptools	24.3:

Use	pip install	and	it	will	adhere	to	python_requires.

N.B.:	Do	not	invoke	setup.py	directly!

# setup.py

setup(..., 
    python_requires='>=3.4'
)



In	greater	detail



python_requires	metadata	comes	from	 ,	2005.

But	for	11	years	nothing	implemented	or	understood	it.

pep	345

https://www.python.org/dev/peps/pep-0345/#requires-python


setuptools	>=	24.3

The	python_requires	keyword	in	known	only	by	setuptools	versions
>	24.3.

Required	to	build	the	sdist/wheel	and	publish	the	package
Required	to	install	from	sdist.



pip	>=	9.0.1

From	PyPI:	Versions	of	pip	<	9	ignore	data-requires-python
attributes.

This	will	result	in	installing	incompatible	versions.



Defensive	packaging

1.	 Update	your	documentation	and	scripts	to	use	pip.

2.	 Keep	setup.py	and	__init__.py	python	2	compatible,
but	have	them	err	early.

3.	 For	clear	error	messages	in	complicated	situations,
use	multiple	lines.



Direct	users	to	pip install

Update	your	documentation	and	scripts	to	use	pip install [-e] ..

Reiteration:	Do	not	use	python setup.py <…>;
it	ignores	requires_python.



Keep	setup.py	python	2	compatible.

If	installation	fails	before	setup(),	the	most	probable	reason:

pip	<	9.

Catch	this,	and	don't	let	installation	finish!

Instead:	explicitly	ask	users	to	update	pip.



E.g.,:	in	setup.py,	before	setup():

if sys.version_info < (3, 3):
    error = """
IPython 6.0+ does not support Python 2.6, 2.7, 3.0,
3.1, or 3.2. Beginning with IPython 6.0, Python 3.3
and above is required.

This may be due to an out of date pip.

Make sure you have pip >= 9.0.1.
"""
    sys.exit(error)



Keep	__init__.py	python	2	compatible

Users	will	still	find	ways	to	avoid	pip	and	setup.py.	e.g.:

$ pip install -e . 
$ ...
$ git pull  # update without install



E.g.,	in	__init__.py	before	module	imports:

import sys
if sys.version_info < (3,3):
    raise ImportError(
"""
IPython 6.0+ does not support Python 2.6, 2.7, 3.0,
3.1, or 3.2. Beginning with IPython 6.0, Python 3.3
and above is required.

See IPython `README.rst` file for more information:

    https://github.com/ipython/ipython/blob/master/README.rst

""")



Results
IPython	6.0,	#downloads:

First	Week:

Pip	9	-	Python	3	:	45	586
Pip	8	-	Python	2	:	92	386
>	2×,	not	good

Second	Week:

Pip	9	-	Python	3	:	48	389
Pip	8	-	Python	2	:	13	293
>	0.25	×,	still	not	great,	but	better!



Bug	reports	/	complaints

Two.

During	RC:	python setup.py install	got	6.0	on	Python	2	–	now
documented.

"My	Bad	I	did	not	read	the	error	message"



Under	the	Hood



The	old	PEP

PEP	345

Requires-Python
===============

This field specifies the Python version(s) that the
distribution is guaranteed to be compatible with.

Version numbers must be in the format specified in
Version Specifiers.

Examples:

    Requires-Python: 2.5
    Requires-Python: >2.1
    Requires-Python: >=2.3.4
    Requires-Python: >=2.5,<2.7

https://www.python.org/dev/peps/pep-0345/#requires-python


Great!	How	do	we	use	it?



Setuptools

As	of	 ,	your	setup()	call	follows	the	python_requires
keyword	when	building	a	package	from	source.

Kudos	to	@xavfernandez	for	making	that	possible.

setuptools	24.2

https://github.com/pypa/setuptools/pull/631/


Pypi

Pip	should	get	Require-Python	info	before	downloading	the	sdist.

Pip	does	that	by	checking	the	/simple/	repository	url:



view-source:https://pypi.python.org/simple/pip/

<!DOCTYPE html><html><head><title>Links for pip</title></
<a href="…/pip-1.3.tar.gz" >pip-1.3.tar.gz</a><br/>
<a href="…/pip-8.0.0-py2.py3-none-any.whl" >pip-8.0.0-py2.py3-none-any.whl
<a href="…/pip-6.0.4.tar.gz" >pip-6.0.4.tar.gz</a><br/>
<a href="…/pip-0.3.1.tar.gz" >pip-0.3.1.tar.gz</a><br/>
<a href="…/pip-1.0.1.tar.gz" >pip-1.0.1.tar.gz</a><br/>
<a data-requires-python="&gt;=2.6,!=3.0.*" href="…/pip-9.0.1.tar.gz"
<a href="…/pip-1.0.2.tar.gz" >pip-1.0.2.tar.gz</a><br/>
<a href="…/pip-0.3.tar.gz" >pip-0.3.tar.gz</a><br/>
<a href="…/pip-0.8.2.tar.gz" >pip-0.8.2.tar.gz</a><br/>
<a href="…/pip-0.2.1.tar.gz" >pip-0.2.1.tar.gz</a><br/>
⋮

https://pypi.python.org/simple/pip/


This	lists	files	and	now	have	data-requires-python	with	version
specifications	for	each	file.

This	was	done	by	amending	 .

N.B.:	If	you	are	running	(or	maintain)	a	PyPI	proxy	please	make	sure
it	surfaces	new	data-requires-python.

PEP	503

https://www.python.org/dev/peps/pep-0503/


Pip

Pip	9+	checks	data-requires-python.

In	the	same	place	that	pip	process	the	wheel	filenames	(to	get	-py2	,
-py3	suffixes)	and	filter	"compatible"	files.

That's	the	main	reason	you	want	final	users	to	upgrade	to	pip	9+	if
you	are	not	on	pip	9+,	pip	will	consider	incompatible	packages,

download	them	and	...	fail	at	some	point.

https://github.com/pypa/pip/pull/3877

https://github.com/pypa/pip/pull/3877


Patching	PyPI	&	Warehouse:	PyPI-legacy

You	likely	know	PyPI-legacy,	that's	usually	where	most	people
download	their	packages	from	when	then	pip install.

But	PyPI	is	old,	its	testing	is	sparse,	and	its	documentation	is	not
always	accurate.	It's	not	easy	to	run	PyPI	locally.



Patching	PyPI	&	Warehouse:	Warehouse

The	PyPA	stated	developing	Warehouse	(the	new,	improved	PyPI)
with	100%	test	coverage	and	solid	documentation.

It	even	has	a	one	liner	to	run	it	locally	using	Docker!



Patching	PyPI	&	Warehouse:	Postgres

PyPI	and	warehouse	are	connected	to	the	same	Postgres	database.
So	any	updates	need	to	be	coördinated	between	them.



Tying	it	together
It	seems	like	it	should	be	straightforward…

When	you	need	the	/simple/<package>	webpage,
the	sql	query	should	simply	be:

Parse	that,	build	a	list	of	hrefs	and	data-requires-python	values,
and	you're	done.	Right?

SELECT * from release_files where package_name=package



Patching	PyPI	&	Warehouse:	dancing	between
tables

PEP	345	specifies	that	requires-python	is	an	attribute	on	releases,
not	release	files.

On	the	one	hand,	that	makes	sense:
we	distribute	files,	which	make	up	releases.

On	the	other	hand,	the	simple	implementation	won't	work:

release	files	are	specified	in	the	release_files	table
releases	are	specified	in	the	releases	table



Patching	PyPI	&	Warehouse:	dancing	between
tables

In	theory,	we	could	use	a	JOIN	on	the	two	tables.

Except,	with	the	number	of	available	packages,	a	JOIN	is	too	slow.

At	the	same	time,	we	cannot	safely	refactor	the	database	because
PyPI-legacy	is	not	well	tested.



Solution:	Triggers

The	JOIN	was	doing	too	much	work;
it'd	be	better	if	we	could	update	only	the	necessary	rows.

Triggers	solve	exactly	that	problem.

We	use	a	trigger	to	update	the	release_files	table	when	it	or
releases	are	updated	(or	a	row	is	inserted	in	either	table).

Detail:	UPSERT	is	a	combination	of	update	and	insert,	greatly
simplifying	the	logic.



Conclusions



On	IPython

IPython	6+	is	Python3	only
We're	still	updating	the	IPython	5.x	–	Python	2	LTS	branch
Transition	has	gone	relatively	well	for	IPython!

It	will	only	get	easier!



On	switching	your	package	to	Python3	only

upgrade	setuptools
use	pip	9+,	encourage	your	users	to	do	the	same
fix	your	documentation	(use	pip,	not	setup.py!)
catch	early	in	py2	compatible	__init__.py	and	setup.py
Read	and	contribute	to	python3statement	practicalities	section

questions,	gotchas,	&c.



On	contributing	to	packaging	infrastructure

We've	improved	the	documentation	of	both	warehouse	and	PyPI,
to	make	new	contributions	easier.
You	should	contribute	—	there's	tonnes	of	low	hanging	fruit!
Add	tests,	clean	up	the	codebase,	or	bring	features	from	PyPI	to
Warehouse.




