
Asynchronous Python for the
Complete Beginner

Miguel Grinberg

S**t Programmers Say...

Async makes your

code go fast!

Wikipedia says...

“Asynchrony, in computer programming, refers to the
occurrence of events independently of the main

program flow and ways to deal with such events.”

How Does Python Do Many Things At Once?

● Multiple processes
○ The OS does all the multi-tasking work
○ The only option for multi-core concurrency
○ Duplicated use of system resources

● Asynchronous programming
○ No OS intervention
○ One process, one thread
○ What’s the trick?

● Multiple threads
○ The OS does all the multi-tasking work
○ In Python, the GIL prevents multi-core concurrency
○ Threads also consume system resources (but less than processes)

Real World Analogy: Chess Exhibition

● Assumptions:
- 24 opponents
- Polgár moves in 5 seconds
- Opponents move in 55 seconds
- Games average 30 move pairs

● Each game runs for 30 minutes
● 24 sequential games would take

24 x 30 min = 720 min = 12 hours!!!

Photo by Ed YourdonSimultaneous chess exhibition by Judit Polgár, 1992

Real World Analogy: Chess Exhibition

● Polgár moves on first game
● While opponent thinks, she moves on

second game, then third, fourth...
● A move on all 24 games takes her

24 x 5 sec = 120 sec = 2 min
● After she completes the round, the

first game is ready for her next move!
● 24 games are completed in

2 min x 30 = 60 min = 1 hour

Photo by Ed YourdonSimultaneous chess exhibition by Judit Polgár, 1992

A practical definition of Async...

“A style of concurrent programming in which tasks
voluntarily release the CPU during waiting periods, so

that other tasks can use it.”

Async in Python

How is Async Implemented?

● Async functions must have the ability to “suspend” and “resume”
● An “event loop” keeps track of all the asynchronous functions and their stages

of completion and schedules their access to CPU
● Ways to implement functions that can suspend/resume in Python:

- Callbacks
- Generator or coroutine functions
- Async/await (Python 3.5+)
- Greenlets (requires greenlet package)

● There are lots of options for asynchronous programming in Python!
- Asyncio, Twisted, Gevent, Eventlet, Tornado, Curio, ...

from time import sleep

def hello():

 print('Hello')

 sleep(3)

 print('World!')

if __name__ == '__main__':

 hello()

Example: Standard (sync) Python
Print “hello”, wait three seconds, then print “world”

import asyncio

loop = asyncio.get_event_loop()

def hello():

 print('Hello')

 loop.call_later(3, print_world)

def print_world():

 print('World!')

if __name__ == '__main__':

 loop.call_soon(hello)

 loop.run_forever()

Example: Asyncio with Callbacks
Print “hello”, wait three seconds, then print “world”

from twisted.internet import reactor

def hello():

 print('Hello')

 reactor.callLater(3, print_world)

def print_world():

 print('World!')

if __name__ == '__main__':

 reactor.callWhenRunning(hello)

 reactor.run()

Example: Twisted with Callbacks
Print “hello”, wait three seconds, then print “world”

Example: Asyncio with Generators/Coroutines
Print “hello”, wait three seconds, then print “world”

import asyncio

loop = asyncio.get_event_loop()

@asyncio.coroutine

def hello():

 print('Hello')

 yield from asyncio.sleep(3)

 print('World!')

if __name__ == '__main__':

 loop.run_until_complete(hello())

Example: Asyncio with Async/Await (3.5+)
Print “hello”, wait three seconds, then print “world”

import asyncio

loop = asyncio.get_event_loop()

async def hello():

 print('Hello')

 await asyncio.sleep(3)

 print('World!')

if __name__ == '__main__':

 loop.run_until_complete(hello())

Example: Gevent and Eventlet
Print “hello”, wait three seconds, then print “world”

from gevent import sleep

def hello():

 print('Hello')

 sleep(3)

 print('World!')

if __name__ == '__main__':

 hello()

from eventlet import sleep

def hello():

 print('Hello')

 sleep(3)

 print('World!')

if __name__ == '__main__':

 hello()

Async Pitfalls

Pitfall #1: Async and CPU-Heavy Tasks

● Long CPU-intensive tasks must routinely release the CPU to avoid starving
other tasks

● This can be done by “sleeping” periodically (such as once per loop iteration):
Asyncio: await asyncio.sleep(0)

Twisted: reactor.callWhenRunning(do_something)

Gevent: gevent.sleep(0)

Eventlet: eventlet.sleep(0)

Pitfall #2: Async and the Python Standard Library

● Blocking library functions are incompatible with async frameworks
socket.*, select.*
subprocess.*, os.waitpid
threading.*
time.sleep

● Async frameworks provide their replacements for these
● Eventlet and Gevent can “monkey-patch” the standard library

Enables lots of Python packages to be asynchronous!

● If nothing else works, async frameworks support running sync code in separate
thread or process pools

● There is no async support for file I/O

Conclusion

Processes vs. Threads vs. Async

Processes Threads Async

Optimize waiting
periods

Yes (OS does it) Yes (OS does it) Yes

Use all CPU cores Yes No No

Scalability Low Medium High

Use blocking std
library functions

Yes Yes No

GIL interference No Some No

Is Async for Me?

● If you are using an async server, then you’re forced to use async too
- Examples: aiohttp, sanic, gevent, eventlet, my own python-socketio (shameless plug!)

● Writing something from scratch? The sweet spot of async is massive scaling
- Extremely busy network servers of any kind
- HTTP long-polling servers
- WebSocket servers
- Highly complex web scraping projects
- Any other problem that requires a lot of tasks that mix network I/O with light processing

● Anything else? Probably not worth the effort
- Unless you want to impress your friends… then go for it!

Thank You!
Miguel Grinberg

@miguelgrinberg

