

Pycon US 2017, Portland, OR

Victor Stinner
vstinner@redhat.com

 Optimizations which made Python
3.6 faster than Python 3.5

(1) Benchmarks

(2) Benchmarks results

(3) Python 3.5 optimizations

(4) Python 3.6 optimizations

(5) Python 3.7 optimizations

Agenda

(1) Benchmarks

Agenda

March 2016, no developer trusted the
Python benchmark suite

Many benchmarks were unstable

It wasn’t possible to decide if an
optimization makes CPython faster or
not...

Unstable benchmarks

Calibrate the number of loops

Spawn 20 processes sequentially, 3
values per process, total: 60 values

Compute average (mean) and
standard deviation

New perf module

Benchmarks rewritten using perf: new
project performance on GitHub

http://speed.python.org now runs
performance

CPython is now compiled with Link
Time Optimization (LTO) and Profile
Guided Optimization (PGO)

performance project

sudo python3 -m perf system tune

Use fixed CPU frequency

Disable Intel Turbo Boost

If CPU isolation is enabled, Linux kernel
options isolcpus and rcu_nocbs, use
CPU pinning

CPU isolation helps a lot to reduce
operation system jitter

Linux and CPUs

Spot perf regression

python_startup: 20 ms => 27 ms, fix: 17 ms

Timeline

April, 2014 – May, 2017: 3 years

(2) Benchmarks results

Agenda

3.6 faster than 3.5

Results normalized to Python 3.5
lower = faster

3.6 faster than 2.7

Results normalized to Python 2.7
lower = faster

3.6 faster than 2.7

Sympy: 22% - 42% faster

telco: 3.6 vs 2.7

Python 3.6 is 40x faster than Python 2.7
(decimal module rewritten in C

by Stefan Krah in Python 3.3)

3.7 faster than 3.6

Results normalized to Python 3.6
lower = faster

(3) Python 3.5
optimizations

Agenda

Matt Joiner, Alexey Kachayev and
Serhiy Storchaka reimplemented
functools.lru_cache() in C

sympy: 20% faster

scimark_lu: 5% faster
Tricky C code, hard to get it right: 3
years ½ to close the bpo-14373

lru_cache()

Eric Snow reimplemented
collections.OrderedDict in C

html5lib: 20% faster
Reuse C implementation of dict

Again, tricky C code: 2 years ½ to
close the bpo-16991

OrderedDict

(4) Python 3.6
optimizations

Agenda

Victor Stinner changed PyMem_Malloc()
to use Python fast memory allocator

Many benchmarks: 5% - 22% faster
Check if the GIL is held in debug hooks

Only numy misused the API (fixed)

PYTHONMALLOC=debug now available
in release builds to detect memory
corruptions, bpo-26249

PyMem_Malloc()

Serhiy Storchaka optimized
ElementTree.iterparse()

2x faster
Follow-up of Brett Canon’s Pycon
Canada 2015 keynote :-)

bpo-25638

ElementTree parse

Brett Canon modified the Profile
Guided Optimization (PGO)

The Python test suite is now used,
rather than pidigits, to guide the
compiler

Many benchmarks: 5% – 27% faster
bpo-24915

PGO uses tests

Demur Rumed and Serhiy Storchaka
modified the bytecode to always use 2
bytes opcodes

Before: 1 (no arg) or 3 bytes (with arg)

Removed an if from ceval.c hotcode
for better CPU branch prediction:
 if (HAS_ARG(opcode))
 oparg = NEXTARG();

bpo-26647

Wordcode

Victor Stinner wrote a new C API to
avoid the creation of temporary
tuples to pass function arguments

Many microbenchmarks: 12% – 50%
faster
obj[0], getattr(obj, "attr"),
{1: 2}.get(1), list.count(0),
str.replace("a","b"), …

Avoid 20 ns per modified function call

FASTCALL

Victor Stinner optimized ASCII and
UTF-8 codecs for ignore, replace,
surrogateescape and surrogatepass
error handlers

UTF-8: decoder 15x faster, encoder
75x faster

ASCII: decoder 60x faster, encoder 3x
faster

Unicode codecs

PEP 461 added back bytes % args to
Python 3.5

Victor Stinner wrote a new
_PyBytesWriter API to optimize
functions creating bytes and
bytearray strings

bytes % args: 2x faster

bytes.fromhex(): 3x faster

bytes % args

Serhiy Storchaka optimized glob.glob(),
glob.iglob() and pathlib globbing using
os.scandir() (new in Python 3.5)

glob: 3x - 6x faster

Pathlib glob: 1.5x - 4x faster
Avoid one stat() per directory entry

bpo-25596, bpo-26032

Globbing

Yury Selivanov and Naoki INADA
reimplemented asyncio Future and
Task classes in C

Asyncio programs: 30% faster
bpo-26081, bpo-28544

asyncio

(5) Python 3.7
optimizations

Agenda

Yury Selivanov and Naoki INADA added
LOAD_METHOD and CALL_METHOD
opcodes

Methods calls: 10% - 20% faster
Idea coming from PyPy, bpo-26110

Method calls

More optimizations are coming in
Python 3.7…

Stay tuned!

Future optimizations

3.7 slower than 2.7 :-(

Results normalized to Python 2.7
higher = slower

http://speed.python.org/

http://faster-cpython.readthedocs.io/

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

