

erik@mozilla.com · IRC: ErikRose · @ErikRose

erik@mozilla.com · IRC: ErikRose · @ErikRose

Constructive
Code Review

Build an excellent product

Build an excellent product

Build people

Build an excellent product

Build people

Build yourself*

*Assumes you are not a person

*Assumes you are not a person

Build an excellent product

Build people

Build yourself*

*Assumes you are not a person

Build an excellent product

Build people

Build yourself*

Creative work 
is powered by
enthusiasm.

Creative work 
is powered by
enthusiasm.enthusiasm

Creative work 
is powered by
enthusiasm.enthusiasm

Creative work 
is powered by
enthusiasm.enthusiasm

We are made 
of meat.

Kindness

Nature cannot 
be fooled.

Truth

Clarity of Explanation

Clarity of Explanation

Clarity of Explanation

Clarity of Explanation

Code

Clarity of Explanation

Code

Links

Clarity of Explanation

Code

Links

Higher-bandwidth communications

Clarity of Explanation

Code

Links

Higher-bandwidth communications

Write down the result!

Clarity of Expectation

Internationalization would be better.

Clarity of Expectation

Internationalization would be better.

Clarity of Expectation

Internationalization would be better.

Tact Hacks

My father would make outrageous claims

like he invented the question mark

The Question Mark

There’s no point returning path results when there is more than one term.

The Question Mark

There’s no point returning path results when there is more than one term.

You, We, & This

If you do it this way, you’ll break Unicode queries

You, We, & This

If you do it this way, you’ll break Unicode queries [you idiot]

You, We, & This

If you do it this way, you’ll break Unicode queries

If we do it this way, it’ll break Unicode queries

[you idiot]

You, We, & This

If you do it this way, you’ll break Unicode queries

If we do it this way, it’ll break Unicode queries

[you idiot]

[my fellow code steward]

You, We, & This

If you do it this way, you’ll break Unicode queries

If we do it this way, it’ll break Unicode queries

This casting will break Unicode queries

[you idiot]

[my fellow code steward]

You, We, & This

If you do it this way, you’ll break Unicode queries

If we do it this way, it’ll break Unicode queries

This casting will break Unicode queries

[you idiot]

[my fellow code steward]

[as a matter of fact]

Compliments

Compliments

Compliments

Thank you for refactoring this scary mess!

Compliments

Thank you for refactoring this scary mess!

Yikes, nice catch!

I think this is an off-by-one on the end of the list.

 Humor

 Humor

I WANT A PONY
🍰

┬──┬ ¯_(ツ)🦄

Antipatterns

TL;DR;LGTM
from __future__ import print_function

from collections import Counter, defaultdict, deque
from functools import partial, wraps
from heapq import merge
from itertools import chain, count, groupby, islice, repeat, takewhile, tee
from operator import itemgetter
from sys import version_info

from six import binary_type, string_types, text_type
from six.moves import filter, map, zip, zip_longest

from .recipes import flatten, take

__all__ = [
 'adjacent',
 'always_iterable',
 'bucket',
 'chunked',
 'collapse',
 'collate',
 'consumer',
 'distinct_permutations',
 'distribute',
 'divide',
 'first',
 'groupby_transform',
 'ilen',
 'interleave_longest',
 'interleave',
 'intersperse',
 'iterate',
 'one',
 'padded',
 'peekable',
 'side_effect',
 'sliced',
 'sort_together',
 'split_after',
 'split_before',
 'spy',
 'stagger',
 'unique_to_each',
 'windowed',
 'with_iter',
 'zip_offset',
]

_marker = object()

def chunked(iterable, n):
 """Break an iterable into lists of a given length::

 >>> list(chunked([1, 2, 3, 4, 5, 6, 7], 3))
 [[1, 2, 3], [4, 5, 6], [7]]

 If the length of ``iterable`` is not evenly divisible by ``n``, the last
 returned list will be shorter.

 This is useful for splitting up a computation on a large number of keys
 into batches, to be pickled and sent off to worker processes. One example
 is operations on rows in MySQL, which does not implement server-side
 cursors properly and would otherwise load the entire dataset into RAM on
 the client.

 """
 return iter(partial(take, n, iter(iterable)), [])

def first(iterable, default=_marker):
 """Return the first item of an iterable, ``default`` if there is none.

 >>> first([0, 1, 2, 3])
 0
 >>> first([], 'some default')
 'some default'

 If ``default`` is not provided and there are no items in the iterable,
 raise ``ValueError``.

 ``first()`` is useful when you have a generator of expensive-to-retrieve
 values and want any arbitrary one. It is marginally shorter than
 ``next(iter(...), default)``.

 """
 try:
 return next(iter(iterable))
 except StopIteration:
 # I'm on the edge about raising ValueError instead of StopIteration. At
 # the moment, ValueError wins, because the caller could conceivably
 # want to do something different with flow control when I raise the
 # exception, and it's weird to explicitly catch StopIteration.
 if default is _marker:
 raise ValueError('first() was called on an empty iterable, and no '
 'default value was provided.')
 return default

class peekable(object):
 """Wrap an iterator to allow lookahead and prepending elements.

 Call ``peek()`` on the result to get the value that will next pop out of
 ``next()``, without advancing the iterator:

 >>> p = peekable(['a', 'b'])
 >>> p.peek()
 'a'
 >>> next(p)
 'a'

class peekable(object):
 """Wrap an iterator to allow lookahead and prepending elements.

 Call ``peek()`` on the result to get the value that will next pop out of
 ``next()``, without advancing the iterator:

 >>> p = peekable(['a', 'b'])
 >>> p.peek()
 'a'
 >>> next(p)
 'a'

 Pass ``peek()`` a default value to return that instead of raising
 ``StopIteration`` when the iterator is exhausted.

 >>> p = peekable([])
 >>> p.peek('hi')
 'hi'

 peekables also offer a ``prepend()`` method which will insert items before
 the remaining part of the underlying source iterator.

 >>> p = peekable([1, 2, 3])
 >>> p.prepend(10, 11, 12)
 >>> next(p)
 10
 >>> p.peek()
 11
 >>> list(p)
 [11, 12, 1, 2, 3]

 Prepended items are treated by other peekable methods exactly as if they
 had come from the source iterator.

 You may index the peekable to look ahead by more than one item.
 The values up to the index you specified will be cached.
 Index 0 is the item that will be returned by ``next()``, index 1 is the
 item after that, and so on:

 >>> p = peekable(['a', 'b', 'c', 'd'])
 >>> p[0]
 'a'
 >>> p[1]
 'b'
 >>> next(p)
 'a'
 >>> p.prepend('x')
 >>> p[1]
 'b'
 >>> next(p)
 'x'
 >>> next(p)
 'b'

 Negative indexes are supported, but be aware that they will cache the
 remaining items in the source iterator, which may require significant
 storage.

 To test whether there are more items in the iterator, examine the
 peekable's truth value. If it is truthy, there are more items (which may
 have been prepended or obtained from the source iterator).

 >>> assert peekable([1])
 >>> p = peekable([])
 >>> assert not p
 >>> p.prepend(1)
 >>> assert p

 """
 def __init__(self, iterable):
 self._it = iter(iterable)
 self._cache = deque()

 def __iter__(self):
 return self

 def __bool__(self):
 try:
 self.peek()
 except StopIteration:
 return False
 return True

 def __nonzero__(self):
 # For Python 2 compatibility
 return self.__bool__()

 def peek(self, default=_marker):
 """Return the item that will be next returned from ``next()``.

 Return ``default`` if there are no items left. If ``default`` is not
 provided, raise ``StopIteration``.

 """
 if not self._cache:
 try:
 self._cache.append(next(self._it))
 except StopIteration:
 if default is _marker:
 raise
 return default
 return self._cache[0]

 def prepend(self, *items):
 """Stack up items to be the next ones returned from ``next()`` or
 ``self.peek()``. The items will be returned in
 first in, first out order::

 >>> p = peekable([1, 2, 3])
 >>> p.prepend(10, 11, 12)
 >>> next(p)
 10
 >>> list(p)

 def __init__(self, iterable):
 self._it = iter(iterable)
 self._cache = deque()

 def __iter__(self):
 return self

 def __bool__(self):
 try:
 self.peek()
 except StopIteration:
 return False
 return True

 def __nonzero__(self):
 # For Python 2 compatibility
 return self.__bool__()

 def peek(self, default=_marker):
 """Return the item that will be next returned from ``next()``.

 Return ``default`` if there are no items left. If ``default`` is not
 provided, raise ``StopIteration``.

 """
 if not self._cache:
 try:
 self._cache.append(next(self._it))
 except StopIteration:
 if default is _marker:
 raise
 return default
 return self._cache[0]

 def prepend(self, *items):
 """Stack up items to be the next ones returned from ``next()`` or
 ``self.peek()``. The items will be returned in
 first in, first out order::

 >>> p = peekable([1, 2, 3])
 >>> p.prepend(10, 11, 12)
 >>> next(p)
 10
 >>> list(p)
 [11, 12, 1, 2, 3]

 It is possible, by prepending items, to "resurrect" a peekable that
 previously raised ``StopIteration``.

 >>> p = peekable([])
 >>> next(p)
 Traceback (most recent call last):
 ...
 StopIteration
 >>> p.prepend(1)
 >>> next(p)
 1
 >>> next(p)
 Traceback (most recent call last):
 ...
 StopIteration

 """
 self._cache.extendleft(reversed(items))

 def __next__(self):
 if self._cache:
 return self._cache.popleft()

 return next(self._it)

 def next(self):
 # For Python 2 compatibility
 return self.__next__()

 def _get_slice(self, index):
 start = index.start
 stop = index.stop

 if (
 ((start is not None) and (start < 0)) or
 ((stop is not None) and (stop < 0))
):
 stop = None
 elif (
 (start is not None) and (stop is not None) and (start > stop)
):
 stop = start + 1

 cache_len = len(self._cache)
 if stop is None:
 self._cache.extend(self._it)
 elif stop >= cache_len:
 self._cache.extend(islice(self._it, stop - cache_len))

 return list(self._cache)[index]

 def __getitem__(self, index):
 if isinstance(index, slice):
 return self._get_slice(index)

 cache_len = len(self._cache)
 if index < 0:
 self._cache.extend(self._it)

def _collate(*iterables, **kwargs):
 """Helper for ``collate()``, called when the user is using the ``reverse``
 or ``key`` keyword arguments on Python versions below 3.5.

 """
 key = kwargs.pop('key', lambda a: a)
 reverse = kwargs.pop('reverse', False)

 min_or_max = partial(max if reverse else min, key=lambda a_b: a_b[0])
 peekables = [peekable(it) for it in iterables]
 peekables = [p for p in peekables if p] # Kill empties.
 while peekables:
 _, p = min_or_max((key(p.peek()), p) for p in peekables)
 yield next(p)
 peekables = [x for x in peekables if x]

def collate(*iterables, **kwargs):
 """Return a sorted merge of the items from each of several already-sorted
 ``iterables``.

 >>> list(collate('ACDZ', 'AZ', 'JKL'))
 ['A', 'A', 'C', 'D', 'J', 'K', 'L', 'Z', 'Z']

 Works lazily, keeping only the next value from each iterable in memory. Use
 ``collate()`` to, for example, perform a n-way mergesort of items that
 don't fit in memory.

 :arg key: A function that returns a comparison value for an item. Defaults
 to the identity function.
 :arg reverse: If ``reverse=True``, yield results in descending order
 rather than ascending. ``iterables`` must also yield their elements in
 descending order.

 If the elements of the passed-in iterables are out of order, you might get
 unexpected results.

 If neither of the keyword arguments are specified, this function delegates
 to ``heapq.merge()``.

 """
 if not kwargs:
 return merge(*iterables)

 return _collate(*iterables, **kwargs)

If using Python version 3.5 or greater, heapq.merge() will be faster than
collate - use that instead.
if version_info >= (3, 5, 0):
 collate = merge

def consumer(func):
 """Decorator that automatically advances a PEP-342-style "reverse iterator"
 to its first yield point so you don't have to call ``next()`` on it
 manually.

 >>> @consumer
 ... def tally():
 ... i = 0
 ... while True:
 ... print('Thing number %s is %s.' % (i, (yield)))
 ... i += 1
 ...
 >>> t = tally()
 >>> t.send('red')
 Thing number 0 is red.
 >>> t.send('fish')
 Thing number 1 is fish.

 Without the decorator, you would have to call ``next(t)`` before
 ``t.send()`` could be used.

 """
 @wraps(func)
 def wrapper(*args, **kwargs):
 gen = func(*args, **kwargs)
 next(gen)
 return gen
 return wrapper

def ilen(iterable):
 """Return the number of items in ``iterable``.

 >>> ilen(x for x in range(1000000) if x % 3 == 0)
 333334

 This consumes the iterable, so handle with care.

 """
 d = deque(enumerate(iterable, 1), maxlen=1)
 return d[0][0] if d else 0

def iterate(func, start):
 """Return ``start``, ``func(start)``, ``func(func(start))``, ...

 >>> from itertools import islice
 >>> list(islice(iterate(lambda x: 2*x, 1), 10))
 [1, 2, 4, 8, 16, 32, 64, 128, 256, 512]

 """
 while True:
 yield start
 start = func(start)

def with_iter(context_manager):

TL;DR;LGTM
from __future__ import print_function

from collections import Counter, defaultdict, deque
from functools import partial, wraps
from heapq import merge
from itertools import chain, count, groupby, islice, repeat, takewhile, tee
from operator import itemgetter
from sys import version_info

from six import binary_type, string_types, text_type
from six.moves import filter, map, zip, zip_longest

from .recipes import flatten, take

__all__ = [
 'adjacent',
 'always_iterable',
 'bucket',
 'chunked',
 'collapse',
 'collate',
 'consumer',
 'distinct_permutations',
 'distribute',
 'divide',
 'first',
 'groupby_transform',
 'ilen',
 'interleave_longest',
 'interleave',
 'intersperse',
 'iterate',
 'one',
 'padded',
 'peekable',
 'side_effect',
 'sliced',
 'sort_together',
 'split_after',
 'split_before',
 'spy',
 'stagger',
 'unique_to_each',
 'windowed',
 'with_iter',
 'zip_offset',
]

_marker = object()

def chunked(iterable, n):
 """Break an iterable into lists of a given length::

 >>> list(chunked([1, 2, 3, 4, 5, 6, 7], 3))
 [[1, 2, 3], [4, 5, 6], [7]]

 If the length of ``iterable`` is not evenly divisible by ``n``, the last
 returned list will be shorter.

 This is useful for splitting up a computation on a large number of keys
 into batches, to be pickled and sent off to worker processes. One example
 is operations on rows in MySQL, which does not implement server-side
 cursors properly and would otherwise load the entire dataset into RAM on
 the client.

 """
 return iter(partial(take, n, iter(iterable)), [])

def first(iterable, default=_marker):
 """Return the first item of an iterable, ``default`` if there is none.

 >>> first([0, 1, 2, 3])
 0
 >>> first([], 'some default')
 'some default'

 If ``default`` is not provided and there are no items in the iterable,
 raise ``ValueError``.

 ``first()`` is useful when you have a generator of expensive-to-retrieve
 values and want any arbitrary one. It is marginally shorter than
 ``next(iter(...), default)``.

 """
 try:
 return next(iter(iterable))
 except StopIteration:
 # I'm on the edge about raising ValueError instead of StopIteration. At
 # the moment, ValueError wins, because the caller could conceivably
 # want to do something different with flow control when I raise the
 # exception, and it's weird to explicitly catch StopIteration.
 if default is _marker:
 raise ValueError('first() was called on an empty iterable, and no '
 'default value was provided.')
 return default

class peekable(object):
 """Wrap an iterator to allow lookahead and prepending elements.

 Call ``peek()`` on the result to get the value that will next pop out of
 ``next()``, without advancing the iterator:

 >>> p = peekable(['a', 'b'])
 >>> p.peek()
 'a'
 >>> next(p)
 'a'

class peekable(object):
 """Wrap an iterator to allow lookahead and prepending elements.

 Call ``peek()`` on the result to get the value that will next pop out of
 ``next()``, without advancing the iterator:

 >>> p = peekable(['a', 'b'])
 >>> p.peek()
 'a'
 >>> next(p)
 'a'

 Pass ``peek()`` a default value to return that instead of raising
 ``StopIteration`` when the iterator is exhausted.

 >>> p = peekable([])
 >>> p.peek('hi')
 'hi'

 peekables also offer a ``prepend()`` method which will insert items before
 the remaining part of the underlying source iterator.

 >>> p = peekable([1, 2, 3])
 >>> p.prepend(10, 11, 12)
 >>> next(p)
 10
 >>> p.peek()
 11
 >>> list(p)
 [11, 12, 1, 2, 3]

 Prepended items are treated by other peekable methods exactly as if they
 had come from the source iterator.

 You may index the peekable to look ahead by more than one item.
 The values up to the index you specified will be cached.
 Index 0 is the item that will be returned by ``next()``, index 1 is the
 item after that, and so on:

 >>> p = peekable(['a', 'b', 'c', 'd'])
 >>> p[0]
 'a'
 >>> p[1]
 'b'
 >>> next(p)
 'a'
 >>> p.prepend('x')
 >>> p[1]
 'b'
 >>> next(p)
 'x'
 >>> next(p)
 'b'

 Negative indexes are supported, but be aware that they will cache the
 remaining items in the source iterator, which may require significant
 storage.

 To test whether there are more items in the iterator, examine the
 peekable's truth value. If it is truthy, there are more items (which may
 have been prepended or obtained from the source iterator).

 >>> assert peekable([1])
 >>> p = peekable([])
 >>> assert not p
 >>> p.prepend(1)
 >>> assert p

 """
 def __init__(self, iterable):
 self._it = iter(iterable)
 self._cache = deque()

 def __iter__(self):
 return self

 def __bool__(self):
 try:
 self.peek()
 except StopIteration:
 return False
 return True

 def __nonzero__(self):
 # For Python 2 compatibility
 return self.__bool__()

 def peek(self, default=_marker):
 """Return the item that will be next returned from ``next()``.

 Return ``default`` if there are no items left. If ``default`` is not
 provided, raise ``StopIteration``.

 """
 if not self._cache:
 try:
 self._cache.append(next(self._it))
 except StopIteration:
 if default is _marker:
 raise
 return default
 return self._cache[0]

 def prepend(self, *items):
 """Stack up items to be the next ones returned from ``next()`` or
 ``self.peek()``. The items will be returned in
 first in, first out order::

 >>> p = peekable([1, 2, 3])
 >>> p.prepend(10, 11, 12)
 >>> next(p)
 10
 >>> list(p)

 def __init__(self, iterable):
 self._it = iter(iterable)
 self._cache = deque()

 def __iter__(self):
 return self

 def __bool__(self):
 try:
 self.peek()
 except StopIteration:
 return False
 return True

 def __nonzero__(self):
 # For Python 2 compatibility
 return self.__bool__()

 def peek(self, default=_marker):
 """Return the item that will be next returned from ``next()``.

 Return ``default`` if there are no items left. If ``default`` is not
 provided, raise ``StopIteration``.

 """
 if not self._cache:
 try:
 self._cache.append(next(self._it))
 except StopIteration:
 if default is _marker:
 raise
 return default
 return self._cache[0]

 def prepend(self, *items):
 """Stack up items to be the next ones returned from ``next()`` or
 ``self.peek()``. The items will be returned in
 first in, first out order::

 >>> p = peekable([1, 2, 3])
 >>> p.prepend(10, 11, 12)
 >>> next(p)
 10
 >>> list(p)
 [11, 12, 1, 2, 3]

 It is possible, by prepending items, to "resurrect" a peekable that
 previously raised ``StopIteration``.

 >>> p = peekable([])
 >>> next(p)
 Traceback (most recent call last):
 ...
 StopIteration
 >>> p.prepend(1)
 >>> next(p)
 1
 >>> next(p)
 Traceback (most recent call last):
 ...
 StopIteration

 """
 self._cache.extendleft(reversed(items))

 def __next__(self):
 if self._cache:
 return self._cache.popleft()

 return next(self._it)

 def next(self):
 # For Python 2 compatibility
 return self.__next__()

 def _get_slice(self, index):
 start = index.start
 stop = index.stop

 if (
 ((start is not None) and (start < 0)) or
 ((stop is not None) and (stop < 0))
):
 stop = None
 elif (
 (start is not None) and (stop is not None) and (start > stop)
):
 stop = start + 1

 cache_len = len(self._cache)
 if stop is None:
 self._cache.extend(self._it)
 elif stop >= cache_len:
 self._cache.extend(islice(self._it, stop - cache_len))

 return list(self._cache)[index]

 def __getitem__(self, index):
 if isinstance(index, slice):
 return self._get_slice(index)

 cache_len = len(self._cache)
 if index < 0:
 self._cache.extend(self._it)

def _collate(*iterables, **kwargs):
 """Helper for ``collate()``, called when the user is using the ``reverse``
 or ``key`` keyword arguments on Python versions below 3.5.

 """
 key = kwargs.pop('key', lambda a: a)
 reverse = kwargs.pop('reverse', False)

 min_or_max = partial(max if reverse else min, key=lambda a_b: a_b[0])
 peekables = [peekable(it) for it in iterables]
 peekables = [p for p in peekables if p] # Kill empties.
 while peekables:
 _, p = min_or_max((key(p.peek()), p) for p in peekables)
 yield next(p)
 peekables = [x for x in peekables if x]

def collate(*iterables, **kwargs):
 """Return a sorted merge of the items from each of several already-sorted
 ``iterables``.

 >>> list(collate('ACDZ', 'AZ', 'JKL'))
 ['A', 'A', 'C', 'D', 'J', 'K', 'L', 'Z', 'Z']

 Works lazily, keeping only the next value from each iterable in memory. Use
 ``collate()`` to, for example, perform a n-way mergesort of items that
 don't fit in memory.

 :arg key: A function that returns a comparison value for an item. Defaults
 to the identity function.
 :arg reverse: If ``reverse=True``, yield results in descending order
 rather than ascending. ``iterables`` must also yield their elements in
 descending order.

 If the elements of the passed-in iterables are out of order, you might get
 unexpected results.

 If neither of the keyword arguments are specified, this function delegates
 to ``heapq.merge()``.

 """
 if not kwargs:
 return merge(*iterables)

 return _collate(*iterables, **kwargs)

If using Python version 3.5 or greater, heapq.merge() will be faster than
collate - use that instead.
if version_info >= (3, 5, 0):
 collate = merge

def consumer(func):
 """Decorator that automatically advances a PEP-342-style "reverse iterator"
 to its first yield point so you don't have to call ``next()`` on it
 manually.

 >>> @consumer
 ... def tally():
 ... i = 0
 ... while True:
 ... print('Thing number %s is %s.' % (i, (yield)))
 ... i += 1
 ...
 >>> t = tally()
 >>> t.send('red')
 Thing number 0 is red.
 >>> t.send('fish')
 Thing number 1 is fish.

 Without the decorator, you would have to call ``next(t)`` before
 ``t.send()`` could be used.

 """
 @wraps(func)
 def wrapper(*args, **kwargs):
 gen = func(*args, **kwargs)
 next(gen)
 return gen
 return wrapper

def ilen(iterable):
 """Return the number of items in ``iterable``.

 >>> ilen(x for x in range(1000000) if x % 3 == 0)
 333334

 This consumes the iterable, so handle with care.

 """
 d = deque(enumerate(iterable, 1), maxlen=1)
 return d[0][0] if d else 0

def iterate(func, start):
 """Return ``start``, ``func(start)``, ``func(func(start))``, ...

 >>> from itertools import islice
 >>> list(islice(iterate(lambda x: 2*x, 1), 10))
 [1, 2, 4, 8, 16, 32, 64, 128, 256, 512]

 """
 while True:
 yield start
 start = func(start)

def with_iter(context_manager):

LGTM!
:-D

TL;DR;LGTM

TL;DR;LGTM

prose overview of patch

TL;DR;LGTM

prose overview of patch

long commit messages

TL;DR;LGTM

prose overview of patch

long commit messages

small commits

TL;DR;LGTM

prose overview of patch

long commit messages

small commits

comments, docstrings, naming

TL;DR;LGTM
GitX

TL;DR;LGTM
GitX

TL;DR;LGTM
FileMerge

Nitpicks

 print 'Hello'

Nitpicks

 print 'Hello'

Should we be
using the Python-3-

style parentheses via
import future?Lowercase please.

i18n?
If we use a logging

framework, we have the
advantage of levels.

Too intimate a 
greeting, I think

Nitpicks

Group lines into files:
for path, lines in groupby(results, lambda r: r['path'][0]): # noqa: E234
 lines = list(lines)
 highlit_path = highlight(# noqa: E234
 path,
 chain.from_iterable((h(lines[0]) for h in # noqa: E123
 path_highlighters)))
 here_is_some_new(code, that.is_ridiculously_longer_than(the_surrounding_code)).and_thus(really).distracting("isn't it?")
 icon_for_path = icon(path)
 yield (icon_for_path,
 highlit_path,
 [(line['number'][0],
 highlight(line['content'][0].rstrip('\n\r'),
 chain.from_iterable(h(line) for h in
 contentHighlighters)))
 for line in lines])
print 'Hello'

Nitpicks

Group lines into files:
for path, lines in groupby(results, lambda r: r['path'][0]): # noqa: E234
 lines = list(lines)
 highlit_path = highlight(# noqa: E234
 path,
 chain.from_iterable((h(lines[0]) for h in # noqa: E123
 path_highlighters)))
 here_is_some_new(code, that.is_ridiculously_longer_than(the_surrounding_code)).and_thus(really).distracting("isn't it?")
 icon_for_path = icon(path)
 yield (icon_for_path,
 highlit_path,
 [(line['number'][0],
 highlight(line['content'][0].rstrip('\n\r'),
 chain.from_iterable(h(line) for h in
 contentHighlighters)))
 for line in lines])
print 'Hello'

Line too long

Should be aligned
with “h” above

Some rogue
camelCase escaped.

Too intimate a 
greeting, I thinkIf we use a logging

framework, we have the
advantage of levels.

Nitpicks

Group lines into files:
for path, lines in groupby(results, lambda r: r['path'][0]): # noqa: E234
 lines = list(lines)
 highlit_path = highlight(# noqa: E234
 path,
 chain.from_iterable((h(lines[0]) for h in # noqa: E123
 path_highlighters)))
 here_is_some_new(code, that.is_ridiculously_longer_than(the_surrounding_code)).and_thus(really).distracting("isn't it?")
 icon_for_path = icon(path)
 yield (icon_for_path,
 highlit_path,
 [(line['number'][0],
 highlight(line['content'][0].rstrip('\n\r'),
 chain.from_iterable(h(line) for h in
 contentHighlighters)))
 for line in lines])
print 'Hello'

Line too long

Should be aligned
with “h” above

Some rogue
camelCase escaped.

Nitpicks

Group lines into files:
for path, lines in groupby(results, lambda r: r['path'][0]): # noqa: E234
 lines = list(lines)
 highlit_path = highlight(# noqa: E234
 path,
 chain.from_iterable((h(lines[0]) for h in # noqa: E123
 path_highlighters)))
 here_is_some_new(code, that.is_ridiculously_longer_than(the_surrounding_code)).and_thus(really).distracting("isn't it?")
 icon_for_path = icon(path)
 yield (icon_for_path,
 highlit_path,
 [(line['number'][0],
 highlight(line['content'][0].rstrip('\n\r'),
 chain.from_iterable(h(line) for h in
 contentHighlighters)))
 for line in lines])
print 'Hello'

Line too long

Should be aligned
with “h” above

Some rogue
camelCase escaped.

PEP 8, PEP 257, Pocoo style guide, Sphinx

Nitpicks

Group lines into files:
for path, lines in groupby(results, lambda r: r['path'][0]): # noqa: E234
 lines = list(lines)
 highlit_path = highlight(# noqa: E234
 path,
 chain.from_iterable((h(lines[0]) for h in # noqa: E123
 path_highlighters)))
 here_is_some_new(code, that.is_ridiculously_longer_than(the_surrounding_code)).and_thus(really).distracting("isn't it?")
 icon_for_path = icon(path)
 yield (icon_for_path,
 highlit_path,
 [(line['number'][0],
 highlight(line['content'][0].rstrip('\n\r'),
 chain.from_iterable(h(line) for h in
 contentHighlighters)))
 for line in lines])
print 'Hello'

PEP 8, PEP 257, Pocoo style guide, Sphinx

Nitpicks

Group lines into files:
for path, lines in groupby(results, lambda r: r['path'][0]): # noqa: E234
 lines = list(lines)
 highlit_path = highlight(# noqa: E234
 path,
 chain.from_iterable((h(lines[0]) for h in # noqa: E123
 path_highlighters)))
 here_is_some_new(code, that.is_ridiculously_longer_than(the_surrounding_code)).and_thus(really).distracting("isn't it?")
 icon_for_path = icon(path)
 yield (icon_for_path,
 highlit_path,
 [(line['number'][0],
 highlight(line['content'][0].rstrip('\n\r'),
 chain.from_iterable(h(line) for h in
 contentHighlighters)))
 for line in lines])
print 'Hello'

PEP 8, PEP 257, Pocoo style guide, Sphinx
flake8

Nitpicks

Group lines into files:
for path, lines in groupby(results, lambda r: r['path'][0]): # noqa: E234
 lines = list(lines)
 highlit_path = highlight(# noqa: E234
 path,
 chain.from_iterable((h(lines[0]) for h in # noqa: E123
 path_highlighters)))
 here_is_some_new(code, that.is_ridiculously_longer_than(the_surrounding_code)).and_thus(really).distracting("isn't it?")
 icon_for_path = icon(path)
 yield (icon_for_path,
 highlit_path,
 [(line['number'][0],
 highlight(line['content'][0].rstrip('\n\r'),
 chain.from_iterable(h(line) for h in
 contentHighlighters)))
 for line in lines])
print 'Hello'

PEP 8, PEP 257, Pocoo style guide, Sphinx
flake8

💩
💩

While you're at it…

While you're at it…

HaHaOnlySerious

http://wiki.c2.com/?HaHaOnlySerious

While you're at it…

HaHaOnlySerious

http://wiki.c2.com/?HaHaOnlySerious

While you're at it…

HaHaOnlySerious

GettingBetter

http://wiki.c2.com/?HaHaOnlySerious
http://wiki.c2.com/?GettingBetter

While you're at it…

HaHaOnlySerious

GettingBetter
BeingPerfect

http://wiki.c2.com/?HaHaOnlySerious
http://wiki.c2.com/?GettingBetter

Slow Turnarounds

Slow Turnarounds

Energizing

Slow Turnarounds

Energizing

Comprehensiveness not required.

Slow Turnarounds

Energizing

Comprehensiveness not required.

Respect working memory.

Slow Turnarounds

Energizing

Comprehensiveness not required.

Respect working memory.

Quick “no”s

Those 
Pesky 

Human
Emotions

Insecurity

Insecurity == fear.

Insecurity

Insecurity == fear.

Everybody is wrapped up in themselves.

Insecurity

Insecurity == fear.

Everybody is wrapped up in themselves.

When someone corrects you, 
that means you just got smarter.

Insecurity

Insecurity == fear.

Everybody is wrapped up in themselves.

When someone corrects you, 
that means you just got smarter.

What are you so afraid of? 
What’s the worst that can happen?

Insecurity

Feeling Short on Time

Feeling Short on Time

Lower standards.

Feeling Short on Time

Lower standards.

Never sleep.

Feeling Short on Time

Lower standards.

Never sleep.

Or pace, prioritize, and peace.

Feeling Short on Time

Lower standards.

Never sleep.

Or pace, prioritize, and peace.

Feeling Short on Time
stuff

In Box

What's the
next action?

actionable

Trash

not

“Someday” List

Defer Until Date

Reference

Do It

takes < 2
minutes

Delegate Calendar “Next” List

Make a Project

1 action
won't finish it else

Feeling Short on Time
stuff

In Box

What's the
next action?

actionable

Trash

not

“Someday” List

Defer Until Date

Reference

Do It

takes < 2
minutes

Delegate Calendar “Next” List

Make a Project

1 action
won't finish it else

Feeling Short on Time
stuff

In Box

What's the
next action?

actionable

Trash

not

“Someday” List

Defer Until Date

Reference

Do It

takes < 2
minutes

Delegate Calendar “Next” List

Make a Project

1 action
won't finish it else

review weekly

Feeling Short on Time

Feeling Short on Time

Patch-batching

Feeling Short on Time

Patch-batching

Leveling up newcomers

Feeling Short on Time

Patch-batching

Leveling up newcomers 1

Feeling Short on Time

Patch-batching

Leveling up newcomers 1 2

Feeling Short on Time

Patch-batching

Leveling up newcomers 1 2 3

The Trust Bank

Never eat lunch alone.

When all else fails…

When all else fails…

Say what you feel.

When all else fails…

Say what you feel.

Invite people into the decision.

Review Checklist
☐ Tact hacks
	 ☐ Question mark
	 ☐ You → we/this

	 ☐ Compliments
	 ☐ Humor
☐ Antipatterns
	 ☐ TL;DR;LGTM
	 ☐ Nitpicks
	 ☐ While you’re at it…
	 ☐ Slow Turnarounds

☐ Clarity of explanation
☐ Clarity of expectation
☐ Pesky Emotions
	 ☐ Insecurity
	 ☐ Feeling short on time

	☐ Pace & peace
	☐ Getting Things Done
	☐ Patch-batching
	☐ Leveling up newcomers

	 ☐ The trust bank
	 ☐ Articulate emotions

erik@mozilla.com · IRC: ErikRose · @ErikRose

