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PyCon 2015

BIOS Implementation Test Suite (BITS)

Python in GRUB and EFI, without an OS

Explore and test hardware and firmware
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EFI networking protocols

EFI_IP4_CONFIG2_PROTOCOL

EFI_TCP4_PROTOCOL



Why networking in firmware?

Send scripts or test data into the machine

Read test data or logs from the machine

Avoid relying on a writable filesystem

Speed up edit/compile/boot/run cycle
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Bridging EFI networking and Python sockets

Could call EFI network protocols directly

Want compatibility with existing Python networking code

Python modules import socket and select

socket (Python) imports _socket (C)
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“Berkeley” sockets

Standard on UNIX/POSIX systems, and on Windows via WinSock

Focusing exclusively on TCP/IP connections
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AF_INET - IP

SOCK_STREAM - TCP
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select - waiting for activity

Pass sets of file descriptors to monitor for reading and for writing

And for exceptions, but ignoring that here

Pass a timeout

Waits for a connected socket to have data to recv or send

Waits for a listening socket to have a connection

Core of the main loop in most network servers

Many OS-specific replacements for scalability and performance
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Python bindings

import socket, select

s = socket.socket() - defaults to TCP/IP

s.connect

s.bind, s.listen, s.accept

s.sendall, s.recv

rl,wl,xl = select.select([s],[],[])

if s in rl:
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CPython implementation

socketmodule.c and selectmodule.c

Extensive dependencies on POSIX and on C sockets API

Would have to implement those APIs in C

Handle C arguments, addresses, buffer management

Would have to call EFI protocols from C

Or, have many callbacks from C to Python
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BITS implementation

C helper for safe asynchronous event handling

Otherwise entirely Python

Python makes all EFI protocol calls



Calling EFI from Python via ctypes



Behind the scenes

efi.system_table is a data structure

efi.system_table.ConOut is a pointer to a protocol

.contents dereferences a ctypes pointer

Most EFI calls expect a “this” pointer

ctypes converts "Hello world\r\n" to a Unicode string

ctypes returns the error code from EFI
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Must keep Python object alive as long as EFI references it

Must explicitly free EFI resources when no longer referenced from
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Read current IP configuration, or start IP configuration
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Create a new EFI_TCP4_PROTOCOL, like socket()

EFI_TCP4_PROTOCOL

EFI socket API: Configure, Connect, Accept, Transmit, Receive, Close

Glossing over quirks, bugs, error handling, workarounds,
and compatibility with older versions
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Impedance mismatch: select versus Receive/Accept

select checks for pending data or connections

Does not read data or accept connection

EFI can only check for data by calling Receive with a valid buffer

Solution: buffer received data, call Receive when buffer empty

Likewise for Accept

Similar to the implementation of sockets in an OS kernel
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Impedance mismatch: Poll

EFI_TCP4_PROTOCOL not updated directly from low-level interrupts

Data processed infrequently, even with asynchronous call running

Caller expected to call Poll periodically if waiting

Improves performance by orders of magnitude

Solution: call Poll inside helpers for select
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Calls take a “completion token” with EFI_EVENT to signal when done

For sockets, EFI_EVENT must have a callback function

Need to handle callback safely from Python
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Python expects bytecode ops and C calls to run to completion

Global Interpreter Lock (GIL)

Data may have inconsistent state when callback occurs

Almost all CPython functions prohibited

Same problem arises with Ctrl-C and signals
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C module provides event callback function pointer

Python code creates EFI_EVENT with C callback

C callback invokes universal Python callback

Python callback dispatches to event-specific callback via dict

dict keeps Python objects live while EFI_EVENT references them
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Implementing select

Takes read and write lists of sockets

Or file descriptors; map to sockets via dict

Loop over sockets until timeout expires

Call _read_ready or _write_ready

_read_ready checks queue, calls Receive or Accept

If already running from previous call, call Poll
Handle connection closure to provide EOF from recv

Queues data or error when callback called

_write_ready returns true if connected

Always calls Poll if connected
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class socket

__init__: Create EFI_TCP4_PROTOCOL from binding protocol

__del__/close: Cancel all outstanding callbacks

connect: Call Configure and Connect

recv: Return data from queue

Spin on _read_ready if queue empty; this starts a Receive

sendall: Call Transmit; save status for

bind: Save provided address and port for later calls

listen: Call Configure for listening socket

accept: Return queued connection if any

Spin on _read_ready if queue empty; this starts an Accept
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Socket demo and walkthrough
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