
Networking without an OS

Josh Triplett
josh@joshtriplett.org

PyCon 2016





Porting Python to run without an OS



Porting Python to run without an OS



PyCon 2015

BIOS Implementation Test Suite (BITS)

Python in GRUB and EFI, without an OS

Explore and test hardware and firmware







BITS Capabilities

Interactive Python interpreter (with line editing and tab completion)

Direct access to hardware and physical memory

Python can call EFI firmware protocols via ctypes

Most of the Python standard library



BITS Capabilities

Interactive Python interpreter (with line editing and tab completion)

Direct access to hardware and physical memory

Python can call EFI firmware protocols via ctypes

Most of the Python standard library



BITS Capabilities

Interactive Python interpreter (with line editing and tab completion)

Direct access to hardware and physical memory

Python can call EFI firmware protocols via ctypes

Most of the Python standard library



BITS Capabilities

Interactive Python interpreter (with line editing and tab completion)

Direct access to hardware and physical memory

Python can call EFI firmware protocols via ctypes

Most of the Python standard library



Most of the Python standard library

Some modules don’t make sense
without an OS



Most of the Python standard library

Some modules don’t make sense
without an OS



os.execve
os.fork

multiprocessing
popen2

subprocess

webbrowser



os.execve
os.fork

multiprocessing
popen2

subprocess

webbrowser



os.execve
os.fork

multiprocessing
popen2

subprocess

webbrowser



import antigravity



socket
select

urllib2
httplib

SocketServer
BaseHTTPServer



socket
select

urllib2
httplib

SocketServer
BaseHTTPServer



EFI networking protocols

EFI_IP4_CONFIG2_PROTOCOL

EFI_TCP4_PROTOCOL



Why networking in firmware?

Send scripts or test data into the machine

Read test data or logs from the machine

Avoid relying on a writable filesystem

Speed up edit/compile/boot/run cycle



Why networking in firmware?

Send scripts or test data into the machine

Read test data or logs from the machine

Avoid relying on a writable filesystem

Speed up edit/compile/boot/run cycle



Why networking in firmware?

Send scripts or test data into the machine

Read test data or logs from the machine

Avoid relying on a writable filesystem

Speed up edit/compile/boot/run cycle



Why networking in firmware?

Send scripts or test data into the machine

Read test data or logs from the machine

Avoid relying on a writable filesystem

Speed up edit/compile/boot/run cycle



Demo



Bridging EFI networking and Python sockets

Could call EFI network protocols directly

Want compatibility with existing Python networking code

Python modules import socket and select

socket (Python) imports _socket (C)



Sockets overview

“Berkeley” sockets

Standard on UNIX/POSIX systems, and on Windows via WinSock

Focusing exclusively on TCP/IP connections



Sockets overview

“Berkeley” sockets

Standard on UNIX/POSIX systems, and on Windows via WinSock

Focusing exclusively on TCP/IP connections



Sockets overview

“Berkeley” sockets

Standard on UNIX/POSIX systems, and on Windows via WinSock

Focusing exclusively on TCP/IP connections



Creating a socket

int s = socket(AF_INET, SOCK_STREAM, 0);

AF_INET - IP

SOCK_STREAM - TCP

Can use s as either client or server socket



Creating a socket

int s = socket(AF_INET, SOCK_STREAM, 0);

AF_INET - IP

SOCK_STREAM - TCP

Can use s as either client or server socket



Creating a socket

int s = socket(AF_INET, SOCK_STREAM, 0);

AF_INET - IP

SOCK_STREAM - TCP

Can use s as either client or server socket



Creating a socket

int s = socket(AF_INET, SOCK_STREAM, 0);

AF_INET - IP

SOCK_STREAM - TCP

Can use s as either client or server socket



Client socket

socket

connect

struct sockaddr

send/recv

close



Client socket

socket

connect

struct sockaddr

send/recv

close



Client socket

socket

connect

struct sockaddr

send/recv

close



Client socket

socket

connect

struct sockaddr

send/recv

close



Client socket

socket

connect

struct sockaddr

send/recv

close



Server socket

socket

bind

struct sockaddr

listen

accept - returns a new connected socket

send/recv
close



Server socket

socket

bind

struct sockaddr

listen

accept - returns a new connected socket

send/recv
close



Server socket

socket

bind

struct sockaddr

listen

accept - returns a new connected socket

send/recv
close



Server socket

socket

bind

struct sockaddr

listen

accept - returns a new connected socket

send/recv
close



Server socket

socket

bind

struct sockaddr

listen

accept - returns a new connected socket

send/recv
close



Server socket

socket

bind

struct sockaddr

listen

accept - returns a new connected socket

send/recv

close



Server socket

socket

bind

struct sockaddr

listen

accept - returns a new connected socket

send/recv
close



select - waiting for activity

Pass sets of file descriptors to monitor for reading and for writing

And for exceptions, but ignoring that here

Pass a timeout

Waits for a connected socket to have data to recv or send

Waits for a listening socket to have a connection

Core of the main loop in most network servers

Many OS-specific replacements for scalability and performance



select - waiting for activity

Pass sets of file descriptors to monitor for reading and for writing

And for exceptions, but ignoring that here

Pass a timeout

Waits for a connected socket to have data to recv or send

Waits for a listening socket to have a connection

Core of the main loop in most network servers

Many OS-specific replacements for scalability and performance



select - waiting for activity

Pass sets of file descriptors to monitor for reading and for writing

And for exceptions, but ignoring that here

Pass a timeout

Waits for a connected socket to have data to recv or send

Waits for a listening socket to have a connection

Core of the main loop in most network servers

Many OS-specific replacements for scalability and performance



select - waiting for activity

Pass sets of file descriptors to monitor for reading and for writing

And for exceptions, but ignoring that here

Pass a timeout

Waits for a connected socket to have data to recv or send

Waits for a listening socket to have a connection

Core of the main loop in most network servers

Many OS-specific replacements for scalability and performance



select - waiting for activity

Pass sets of file descriptors to monitor for reading and for writing

And for exceptions, but ignoring that here

Pass a timeout

Waits for a connected socket to have data to recv or send

Waits for a listening socket to have a connection

Core of the main loop in most network servers

Many OS-specific replacements for scalability and performance



select - waiting for activity

Pass sets of file descriptors to monitor for reading and for writing

And for exceptions, but ignoring that here

Pass a timeout

Waits for a connected socket to have data to recv or send

Waits for a listening socket to have a connection

Core of the main loop in most network servers

Many OS-specific replacements for scalability and performance



select - waiting for activity

Pass sets of file descriptors to monitor for reading and for writing

And for exceptions, but ignoring that here

Pass a timeout

Waits for a connected socket to have data to recv or send

Waits for a listening socket to have a connection

Core of the main loop in most network servers

Many OS-specific replacements for scalability and performance



Python bindings

import socket, select

s = socket.socket() - defaults to TCP/IP

s.connect

s.bind, s.listen, s.accept

s.sendall, s.recv

rl,wl,xl = select.select([s],[],[])

if s in rl:



Python bindings

import socket, select

s = socket.socket() - defaults to TCP/IP

s.connect

s.bind, s.listen, s.accept

s.sendall, s.recv

rl,wl,xl = select.select([s],[],[])

if s in rl:



Python bindings

import socket, select

s = socket.socket() - defaults to TCP/IP

s.connect

s.bind, s.listen, s.accept

s.sendall, s.recv

rl,wl,xl = select.select([s],[],[])

if s in rl:



Python bindings

import socket, select

s = socket.socket() - defaults to TCP/IP

s.connect

s.bind, s.listen, s.accept

s.sendall, s.recv

rl,wl,xl = select.select([s],[],[])

if s in rl:



Python bindings

import socket, select

s = socket.socket() - defaults to TCP/IP

s.connect

s.bind, s.listen, s.accept

s.sendall, s.recv

rl,wl,xl = select.select([s],[],[])

if s in rl:



Python bindings

import socket, select

s = socket.socket() - defaults to TCP/IP

s.connect

s.bind, s.listen, s.accept

s.sendall, s.recv

rl,wl,xl = select.select([s],[],[])

if s in rl:



CPython implementation

socketmodule.c and selectmodule.c

Extensive dependencies on POSIX and on C sockets API

Would have to implement those APIs in C

Handle C arguments, addresses, buffer management

Would have to call EFI protocols from C

Or, have many callbacks from C to Python



CPython implementation

socketmodule.c and selectmodule.c

Extensive dependencies on POSIX and on C sockets API

Would have to implement those APIs in C

Handle C arguments, addresses, buffer management

Would have to call EFI protocols from C

Or, have many callbacks from C to Python



CPython implementation

socketmodule.c and selectmodule.c

Extensive dependencies on POSIX and on C sockets API

Would have to implement those APIs in C

Handle C arguments, addresses, buffer management

Would have to call EFI protocols from C

Or, have many callbacks from C to Python



CPython implementation

socketmodule.c and selectmodule.c

Extensive dependencies on POSIX and on C sockets API

Would have to implement those APIs in C

Handle C arguments, addresses, buffer management

Would have to call EFI protocols from C

Or, have many callbacks from C to Python



CPython implementation

socketmodule.c and selectmodule.c

Extensive dependencies on POSIX and on C sockets API

Would have to implement those APIs in C

Handle C arguments, addresses, buffer management

Would have to call EFI protocols from C

Or, have many callbacks from C to Python



CPython implementation

socketmodule.c and selectmodule.c

Extensive dependencies on POSIX and on C sockets API

Would have to implement those APIs in C

Handle C arguments, addresses, buffer management

Would have to call EFI protocols from C

Or, have many callbacks from C to Python



BITS implementation

C helper for safe asynchronous event handling

Otherwise entirely Python

Python makes all EFI protocol calls



Calling EFI from Python via ctypes



Behind the scenes

efi.system_table is a data structure

efi.system_table.ConOut is a pointer to a protocol

.contents dereferences a ctypes pointer

Most EFI calls expect a “this” pointer

ctypes converts "Hello world\r\n" to a Unicode string

ctypes returns the error code from EFI



Behind the scenes

efi.system_table is a data structure

efi.system_table.ConOut is a pointer to a protocol

.contents dereferences a ctypes pointer

Most EFI calls expect a “this” pointer

ctypes converts "Hello world\r\n" to a Unicode string

ctypes returns the error code from EFI



Behind the scenes

efi.system_table is a data structure

efi.system_table.ConOut is a pointer to a protocol

.contents dereferences a ctypes pointer

Most EFI calls expect a “this” pointer

ctypes converts "Hello world\r\n" to a Unicode string

ctypes returns the error code from EFI



Behind the scenes

efi.system_table is a data structure

efi.system_table.ConOut is a pointer to a protocol

.contents dereferences a ctypes pointer

Most EFI calls expect a “this” pointer

ctypes converts "Hello world\r\n" to a Unicode string

ctypes returns the error code from EFI



Behind the scenes

efi.system_table is a data structure

efi.system_table.ConOut is a pointer to a protocol

.contents dereferences a ctypes pointer

Most EFI calls expect a “this” pointer

ctypes converts "Hello world\r\n" to a Unicode string

ctypes returns the error code from EFI



Behind the scenes

efi.system_table is a data structure

efi.system_table.ConOut is a pointer to a protocol

.contents dereferences a ctypes pointer

Most EFI calls expect a “this” pointer

ctypes converts "Hello world\r\n" to a Unicode string

ctypes returns the error code from EFI



Resource management

EFI uses manual memory management

Python uses garbage collection

Python GC doesn’t know about references from EFI

Must keep Python object alive as long as EFI references it

Must explicitly free EFI resources when no longer referenced from
Python



Resource management

EFI uses manual memory management

Python uses garbage collection

Python GC doesn’t know about references from EFI

Must keep Python object alive as long as EFI references it

Must explicitly free EFI resources when no longer referenced from
Python



Resource management

EFI uses manual memory management

Python uses garbage collection

Python GC doesn’t know about references from EFI

Must keep Python object alive as long as EFI references it

Must explicitly free EFI resources when no longer referenced from
Python



Resource management

EFI uses manual memory management

Python uses garbage collection

Python GC doesn’t know about references from EFI

Must keep Python object alive as long as EFI references it

Must explicitly free EFI resources when no longer referenced from
Python



Resource management

EFI uses manual memory management

Python uses garbage collection

Python GC doesn’t know about references from EFI

Must keep Python object alive as long as EFI references it

Must explicitly free EFI resources when no longer referenced from
Python



EFI networking protocols

EFI_IP4_CONFIG2_PROTOCOL

Read current IP configuration, or start IP configuration

EFI_TCP4_SERVICE_BINDING_PROTOCOL

Create a new EFI_TCP4_PROTOCOL, like socket()

EFI_TCP4_PROTOCOL

EFI socket API: Configure, Connect, Accept, Transmit, Receive, Close

Glossing over quirks, bugs, error handling, workarounds,
and compatibility with older versions



EFI networking protocols

EFI_IP4_CONFIG2_PROTOCOL

Read current IP configuration, or start IP configuration

EFI_TCP4_SERVICE_BINDING_PROTOCOL

Create a new EFI_TCP4_PROTOCOL, like socket()

EFI_TCP4_PROTOCOL

EFI socket API: Configure, Connect, Accept, Transmit, Receive, Close

Glossing over quirks, bugs, error handling, workarounds,
and compatibility with older versions



EFI networking protocols

EFI_IP4_CONFIG2_PROTOCOL

Read current IP configuration, or start IP configuration

EFI_TCP4_SERVICE_BINDING_PROTOCOL

Create a new EFI_TCP4_PROTOCOL, like socket()

EFI_TCP4_PROTOCOL

EFI socket API: Configure, Connect, Accept, Transmit, Receive, Close

Glossing over quirks, bugs, error handling, workarounds,
and compatibility with older versions



EFI networking protocols

EFI_IP4_CONFIG2_PROTOCOL

Read current IP configuration, or start IP configuration

EFI_TCP4_SERVICE_BINDING_PROTOCOL

Create a new EFI_TCP4_PROTOCOL, like socket()

EFI_TCP4_PROTOCOL

EFI socket API: Configure, Connect, Accept, Transmit, Receive, Close

Glossing over quirks, bugs, error handling, workarounds,
and compatibility with older versions



EFI networking protocols

EFI_IP4_CONFIG2_PROTOCOL

Read current IP configuration, or start IP configuration

EFI_TCP4_SERVICE_BINDING_PROTOCOL

Create a new EFI_TCP4_PROTOCOL, like socket()

EFI_TCP4_PROTOCOL

EFI socket API: Configure, Connect, Accept, Transmit, Receive, Close

Glossing over quirks, bugs, error handling, workarounds,
and compatibility with older versions



EFI networking protocols

EFI_IP4_CONFIG2_PROTOCOL

Read current IP configuration, or start IP configuration

EFI_TCP4_SERVICE_BINDING_PROTOCOL

Create a new EFI_TCP4_PROTOCOL, like socket()

EFI_TCP4_PROTOCOL

EFI socket API: Configure, Connect, Accept, Transmit, Receive, Close

Glossing over quirks, bugs, error handling, workarounds,
and compatibility with older versions



EFI networking protocols

EFI_IP4_CONFIG2_PROTOCOL

Read current IP configuration, or start IP configuration

EFI_TCP4_SERVICE_BINDING_PROTOCOL

Create a new EFI_TCP4_PROTOCOL, like socket()

EFI_TCP4_PROTOCOL

EFI socket API: Configure, Connect, Accept, Transmit, Receive, Close

Glossing over quirks, bugs, error handling, workarounds,
and compatibility with older versions



EFI networking protocols

EFI_IP4_CONFIG2_PROTOCOL

Read current IP configuration, or start IP configuration

EFI_TCP4_SERVICE_BINDING_PROTOCOL

Create a new EFI_TCP4_PROTOCOL, like socket()

EFI_TCP4_PROTOCOL

EFI socket API: Configure, Connect, Accept, Transmit, Receive, Close

Glossing over quirks, bugs, error handling, workarounds,
and compatibility with older versions



Impedance mismatch: select versus Receive/Accept

select checks for pending data or connections

Does not read data or accept connection

EFI can only check for data by calling Receive with a valid buffer

Solution: buffer received data, call Receive when buffer empty

Likewise for Accept

Similar to the implementation of sockets in an OS kernel



Impedance mismatch: select versus Receive/Accept

select checks for pending data or connections

Does not read data or accept connection

EFI can only check for data by calling Receive with a valid buffer

Solution: buffer received data, call Receive when buffer empty

Likewise for Accept

Similar to the implementation of sockets in an OS kernel



Impedance mismatch: select versus Receive/Accept

select checks for pending data or connections

Does not read data or accept connection

EFI can only check for data by calling Receive with a valid buffer

Solution: buffer received data, call Receive when buffer empty

Likewise for Accept

Similar to the implementation of sockets in an OS kernel



Impedance mismatch: select versus Receive/Accept

select checks for pending data or connections

Does not read data or accept connection

EFI can only check for data by calling Receive with a valid buffer

Solution: buffer received data, call Receive when buffer empty

Likewise for Accept

Similar to the implementation of sockets in an OS kernel



Impedance mismatch: select versus Receive/Accept

select checks for pending data or connections

Does not read data or accept connection

EFI can only check for data by calling Receive with a valid buffer

Solution: buffer received data, call Receive when buffer empty

Likewise for Accept

Similar to the implementation of sockets in an OS kernel



Impedance mismatch: select versus Receive/Accept

select checks for pending data or connections

Does not read data or accept connection

EFI can only check for data by calling Receive with a valid buffer

Solution: buffer received data, call Receive when buffer empty

Likewise for Accept

Similar to the implementation of sockets in an OS kernel



Impedance mismatch: Poll

EFI_TCP4_PROTOCOL not updated directly from low-level interrupts

Data processed infrequently, even with asynchronous call running

Caller expected to call Poll periodically if waiting

Improves performance by orders of magnitude

Solution: call Poll inside helpers for select



Impedance mismatch: Poll

EFI_TCP4_PROTOCOL not updated directly from low-level interrupts

Data processed infrequently, even with asynchronous call running

Caller expected to call Poll periodically if waiting

Improves performance by orders of magnitude

Solution: call Poll inside helpers for select



Impedance mismatch: Poll

EFI_TCP4_PROTOCOL not updated directly from low-level interrupts

Data processed infrequently, even with asynchronous call running

Caller expected to call Poll periodically if waiting

Improves performance by orders of magnitude

Solution: call Poll inside helpers for select



Impedance mismatch: Poll

EFI_TCP4_PROTOCOL not updated directly from low-level interrupts

Data processed infrequently, even with asynchronous call running

Caller expected to call Poll periodically if waiting

Improves performance by orders of magnitude

Solution: call Poll inside helpers for select



Impedance mismatch: Poll

EFI_TCP4_PROTOCOL not updated directly from low-level interrupts

Data processed infrequently, even with asynchronous call running

Caller expected to call Poll periodically if waiting

Improves performance by orders of magnitude

Solution: call Poll inside helpers for select



Impedance mismatch: asynchronous callbacks

All EFI socket calls asynchronous

Calls take a “completion token” with EFI_EVENT to signal when done

For sockets, EFI_EVENT must have a callback function

Need to handle callback safely from Python



Impedance mismatch: asynchronous callbacks

All EFI socket calls asynchronous

Calls take a “completion token” with EFI_EVENT to signal when done

For sockets, EFI_EVENT must have a callback function

Need to handle callback safely from Python



Impedance mismatch: asynchronous callbacks

All EFI socket calls asynchronous

Calls take a “completion token” with EFI_EVENT to signal when done

For sockets, EFI_EVENT must have a callback function

Need to handle callback safely from Python



Impedance mismatch: asynchronous callbacks

All EFI socket calls asynchronous

Calls take a “completion token” with EFI_EVENT to signal when done

For sockets, EFI_EVENT must have a callback function

Need to handle callback safely from Python



Python concurrency model

Python expects bytecode ops and C calls to run to completion

Global Interpreter Lock (GIL)

Data may have inconsistent state when callback occurs

Almost all CPython functions prohibited

Same problem arises with Ctrl-C and signals



Python concurrency model

Python expects bytecode ops and C calls to run to completion

Global Interpreter Lock (GIL)

Data may have inconsistent state when callback occurs

Almost all CPython functions prohibited

Same problem arises with Ctrl-C and signals



Python concurrency model

Python expects bytecode ops and C calls to run to completion

Global Interpreter Lock (GIL)

Data may have inconsistent state when callback occurs

Almost all CPython functions prohibited

Same problem arises with Ctrl-C and signals



Python concurrency model

Python expects bytecode ops and C calls to run to completion

Global Interpreter Lock (GIL)

Data may have inconsistent state when callback occurs

Almost all CPython functions prohibited

Same problem arises with Ctrl-C and signals



Python concurrency model

Python expects bytecode ops and C calls to run to completion

Global Interpreter Lock (GIL)

Data may have inconsistent state when callback occurs

Almost all CPython functions prohibited

Same problem arises with Ctrl-C and signals



Py_AddPendingCall

Register a callback (with context)

Python calls it at the next safe point

Can call arbitrary CPython functions from the callback



Py_AddPendingCall

Register a callback (with context)

Python calls it at the next safe point

Can call arbitrary CPython functions from the callback



Py_AddPendingCall

Register a callback (with context)

Python calls it at the next safe point

Can call arbitrary CPython functions from the callback



Handling events

C module provides event callback function pointer

Python code creates EFI_EVENT with C callback

C callback invokes universal Python callback

Python callback dispatches to event-specific callback via dict

dict keeps Python objects live while EFI_EVENT references them



Handling events

C module provides event callback function pointer

Python code creates EFI_EVENT with C callback

C callback invokes universal Python callback

Python callback dispatches to event-specific callback via dict

dict keeps Python objects live while EFI_EVENT references them



Handling events

C module provides event callback function pointer

Python code creates EFI_EVENT with C callback

C callback invokes universal Python callback

Python callback dispatches to event-specific callback via dict

dict keeps Python objects live while EFI_EVENT references them



Handling events

C module provides event callback function pointer

Python code creates EFI_EVENT with C callback

C callback invokes universal Python callback

Python callback dispatches to event-specific callback via dict

dict keeps Python objects live while EFI_EVENT references them



Handling events

C module provides event callback function pointer

Python code creates EFI_EVENT with C callback

C callback invokes universal Python callback

Python callback dispatches to event-specific callback via dict

dict keeps Python objects live while EFI_EVENT references them



Implementing select

Takes read and write lists of sockets

Or file descriptors; map to sockets via dict

Loop over sockets until timeout expires

Call _read_ready or _write_ready

_read_ready checks queue, calls Receive or Accept

If already running from previous call, call Poll
Handle connection closure to provide EOF from recv

Queues data or error when callback called

_write_ready returns true if connected

Always calls Poll if connected



Implementing select

Takes read and write lists of sockets

Or file descriptors; map to sockets via dict

Loop over sockets until timeout expires

Call _read_ready or _write_ready

_read_ready checks queue, calls Receive or Accept

If already running from previous call, call Poll
Handle connection closure to provide EOF from recv

Queues data or error when callback called

_write_ready returns true if connected

Always calls Poll if connected



Implementing select

Takes read and write lists of sockets

Or file descriptors; map to sockets via dict

Loop over sockets until timeout expires

Call _read_ready or _write_ready

_read_ready checks queue, calls Receive or Accept

If already running from previous call, call Poll
Handle connection closure to provide EOF from recv

Queues data or error when callback called

_write_ready returns true if connected

Always calls Poll if connected



Implementing select

Takes read and write lists of sockets

Or file descriptors; map to sockets via dict

Loop over sockets until timeout expires

Call _read_ready or _write_ready

_read_ready checks queue, calls Receive or Accept

If already running from previous call, call Poll
Handle connection closure to provide EOF from recv

Queues data or error when callback called

_write_ready returns true if connected

Always calls Poll if connected



Implementing select

Takes read and write lists of sockets

Or file descriptors; map to sockets via dict

Loop over sockets until timeout expires

Call _read_ready or _write_ready

_read_ready checks queue, calls Receive or Accept

If already running from previous call, call Poll
Handle connection closure to provide EOF from recv

Queues data or error when callback called

_write_ready returns true if connected

Always calls Poll if connected



Implementing select

Takes read and write lists of sockets

Or file descriptors; map to sockets via dict

Loop over sockets until timeout expires

Call _read_ready or _write_ready

_read_ready checks queue, calls Receive or Accept

If already running from previous call, call Poll

Handle connection closure to provide EOF from recv

Queues data or error when callback called

_write_ready returns true if connected

Always calls Poll if connected



Implementing select

Takes read and write lists of sockets

Or file descriptors; map to sockets via dict

Loop over sockets until timeout expires

Call _read_ready or _write_ready

_read_ready checks queue, calls Receive or Accept

If already running from previous call, call Poll
Handle connection closure to provide EOF from recv

Queues data or error when callback called

_write_ready returns true if connected

Always calls Poll if connected



Implementing select

Takes read and write lists of sockets

Or file descriptors; map to sockets via dict

Loop over sockets until timeout expires

Call _read_ready or _write_ready

_read_ready checks queue, calls Receive or Accept

If already running from previous call, call Poll
Handle connection closure to provide EOF from recv

Queues data or error when callback called

_write_ready returns true if connected

Always calls Poll if connected



Implementing select

Takes read and write lists of sockets

Or file descriptors; map to sockets via dict

Loop over sockets until timeout expires

Call _read_ready or _write_ready

_read_ready checks queue, calls Receive or Accept

If already running from previous call, call Poll
Handle connection closure to provide EOF from recv

Queues data or error when callback called

_write_ready returns true if connected

Always calls Poll if connected



Implementing select

Takes read and write lists of sockets

Or file descriptors; map to sockets via dict

Loop over sockets until timeout expires

Call _read_ready or _write_ready

_read_ready checks queue, calls Receive or Accept

If already running from previous call, call Poll
Handle connection closure to provide EOF from recv

Queues data or error when callback called

_write_ready returns true if connected

Always calls Poll if connected



class socket

__init__: Create EFI_TCP4_PROTOCOL from binding protocol

__del__/close: Cancel all outstanding callbacks

connect: Call Configure and Connect

recv: Return data from queue

Spin on _read_ready if queue empty; this starts a Receive

sendall: Call Transmit; save status for

bind: Save provided address and port for later calls

listen: Call Configure for listening socket

accept: Return queued connection if any

Spin on _read_ready if queue empty; this starts an Accept



class socket

__init__: Create EFI_TCP4_PROTOCOL from binding protocol

__del__/close: Cancel all outstanding callbacks

connect: Call Configure and Connect

recv: Return data from queue

Spin on _read_ready if queue empty; this starts a Receive

sendall: Call Transmit; save status for

bind: Save provided address and port for later calls

listen: Call Configure for listening socket

accept: Return queued connection if any

Spin on _read_ready if queue empty; this starts an Accept



class socket

__init__: Create EFI_TCP4_PROTOCOL from binding protocol

__del__/close: Cancel all outstanding callbacks

connect: Call Configure and Connect

recv: Return data from queue

Spin on _read_ready if queue empty; this starts a Receive

sendall: Call Transmit; save status for

bind: Save provided address and port for later calls

listen: Call Configure for listening socket

accept: Return queued connection if any

Spin on _read_ready if queue empty; this starts an Accept



class socket

__init__: Create EFI_TCP4_PROTOCOL from binding protocol

__del__/close: Cancel all outstanding callbacks

connect: Call Configure and Connect

recv: Return data from queue

Spin on _read_ready if queue empty; this starts a Receive

sendall: Call Transmit; save status for

bind: Save provided address and port for later calls

listen: Call Configure for listening socket

accept: Return queued connection if any

Spin on _read_ready if queue empty; this starts an Accept



class socket

__init__: Create EFI_TCP4_PROTOCOL from binding protocol

__del__/close: Cancel all outstanding callbacks

connect: Call Configure and Connect

recv: Return data from queue

Spin on _read_ready if queue empty; this starts a Receive

sendall: Call Transmit; save status for

bind: Save provided address and port for later calls

listen: Call Configure for listening socket

accept: Return queued connection if any

Spin on _read_ready if queue empty; this starts an Accept



class socket

__init__: Create EFI_TCP4_PROTOCOL from binding protocol

__del__/close: Cancel all outstanding callbacks

connect: Call Configure and Connect

recv: Return data from queue

Spin on _read_ready if queue empty; this starts a Receive

sendall: Call Transmit; save status for

bind: Save provided address and port for later calls

listen: Call Configure for listening socket

accept: Return queued connection if any

Spin on _read_ready if queue empty; this starts an Accept



class socket

__init__: Create EFI_TCP4_PROTOCOL from binding protocol

__del__/close: Cancel all outstanding callbacks

connect: Call Configure and Connect

recv: Return data from queue

Spin on _read_ready if queue empty; this starts a Receive

sendall: Call Transmit; save status for

bind: Save provided address and port for later calls

listen: Call Configure for listening socket

accept: Return queued connection if any

Spin on _read_ready if queue empty; this starts an Accept



class socket

__init__: Create EFI_TCP4_PROTOCOL from binding protocol

__del__/close: Cancel all outstanding callbacks

connect: Call Configure and Connect

recv: Return data from queue

Spin on _read_ready if queue empty; this starts a Receive

sendall: Call Transmit; save status for

bind: Save provided address and port for later calls

listen: Call Configure for listening socket

accept: Return queued connection if any

Spin on _read_ready if queue empty; this starts an Accept



class socket

__init__: Create EFI_TCP4_PROTOCOL from binding protocol

__del__/close: Cancel all outstanding callbacks

connect: Call Configure and Connect

recv: Return data from queue

Spin on _read_ready if queue empty; this starts a Receive

sendall: Call Transmit; save status for

bind: Save provided address and port for later calls

listen: Call Configure for listening socket

accept: Return queued connection if any

Spin on _read_ready if queue empty; this starts an Accept



class socket

__init__: Create EFI_TCP4_PROTOCOL from binding protocol

__del__/close: Cancel all outstanding callbacks

connect: Call Configure and Connect

recv: Return data from queue

Spin on _read_ready if queue empty; this starts a Receive

sendall: Call Transmit; save status for

bind: Save provided address and port for later calls

listen: Call Configure for listening socket

accept: Return queued connection if any

Spin on _read_ready if queue empty; this starts an Accept



Socket demo and walkthrough



High-level client demo



High-level server demo



Try it out yourself

BITS: https://biosbits.org/

QEMU/KVM

Client works automatically
For server, use hostfwd option to forward ports inside

OVMF: Open Virtual Machine Firmware, EFI for QEMU

Or try it on physical hardware

Check BIOS settings to enable EFI network stack
Use wired Ethernet

https://biosbits.org/


Try it out yourself

BITS: https://biosbits.org/

QEMU/KVM

Client works automatically
For server, use hostfwd option to forward ports inside

OVMF: Open Virtual Machine Firmware, EFI for QEMU

Or try it on physical hardware

Check BIOS settings to enable EFI network stack
Use wired Ethernet

https://biosbits.org/


Try it out yourself

BITS: https://biosbits.org/

QEMU/KVM

Client works automatically

For server, use hostfwd option to forward ports inside

OVMF: Open Virtual Machine Firmware, EFI for QEMU

Or try it on physical hardware

Check BIOS settings to enable EFI network stack
Use wired Ethernet

https://biosbits.org/


Try it out yourself

BITS: https://biosbits.org/

QEMU/KVM

Client works automatically
For server, use hostfwd option to forward ports inside

OVMF: Open Virtual Machine Firmware, EFI for QEMU

Or try it on physical hardware

Check BIOS settings to enable EFI network stack
Use wired Ethernet

https://biosbits.org/


Try it out yourself

BITS: https://biosbits.org/

QEMU/KVM

Client works automatically
For server, use hostfwd option to forward ports inside

OVMF: Open Virtual Machine Firmware, EFI for QEMU

Or try it on physical hardware

Check BIOS settings to enable EFI network stack
Use wired Ethernet

https://biosbits.org/


Try it out yourself

BITS: https://biosbits.org/

QEMU/KVM

Client works automatically
For server, use hostfwd option to forward ports inside

OVMF: Open Virtual Machine Firmware, EFI for QEMU

Or try it on physical hardware

Check BIOS settings to enable EFI network stack
Use wired Ethernet

https://biosbits.org/


Try it out yourself

BITS: https://biosbits.org/

QEMU/KVM

Client works automatically
For server, use hostfwd option to forward ports inside

OVMF: Open Virtual Machine Firmware, EFI for QEMU

Or try it on physical hardware

Check BIOS settings to enable EFI network stack

Use wired Ethernet

https://biosbits.org/


Try it out yourself

BITS: https://biosbits.org/

QEMU/KVM

Client works automatically
For server, use hostfwd option to forward ports inside

OVMF: Open Virtual Machine Firmware, EFI for QEMU

Or try it on physical hardware

Check BIOS settings to enable EFI network stack
Use wired Ethernet

https://biosbits.org/


BIOS Implementation Test Suite (BITS)
http://biosbits.org/

Questions?

http://biosbits.org/


Networking without an OS
Demo Backup

Josh Triplett
josh@joshtriplett.org

PyCon 2016
















































































