
Pyjion
Brett Cannon & Dino Viehland, Microsoft (Azure Data Science Tools)

https://github.com/microsoft/pyjion

https://github.com/microsoft/pyjion


What are we trying to do?



Introduce a JIT API to CPython
… we hope 



3 overall goals

1. Introduce a C API to CPython for “plugging in” a JIT

1. Needs to allow for full backwards-compatibility, else not useful

2. All of this is dependent on python-dev accepting the C API proposal

2. Develop a proof-of-concept JIT for CPython using the CoreCLR JIT

1. Needs to be faster for some workloads to show benefit

2. Needs to be backwards-compatible (enough) to work with extension modules

3. Create a C++ framework for CPython JITs to build off of

1. Abstracts out the common stuff when it comes to working with CPython’s bytecode

2. Entirely optional and just a nicety for other (potential) JIT authors



Why?



Because faster is always nicer
… especially when it’s already compatible with your stuff.



How does this compare to … ?

PyPy

 Toolchain to generate a JIT

 Includes an implementation for 

Python

 Currently considered the fastest 

implementation of Python

 Does not work with all C extension 

modules

 CFFI

 Partial C API support

Pyston

 Alpha-quality VM from Dropbox 

that uses 3 execution tiers

 AST (which is really a CFG)

 Baseline JIT

 LLVM JIT

 Re-uses large portions of CPython 

to keep compatibility

 Works w/ extension modules 

Dropbox cares about



How does this compare to … ?

Numba

 Numeric-specific JIT sponsored by 

Continuum Analytics

 You decorate any functions or 

methods you wish to pass to the 

LLVM JIT

 Supports GPUs

Psyco & Unladen Swallow

 Both projects tried to add a JIT to 

CPython

 Pysco was retired and helped lead 

to PyPy

 Unladen Swallow was shut down 

after a year of fighting with bugs in 

LLVM

 Was sponsored by Google



How?



High-level overview

 JIT at the code object level

 All executed code in Python is from a code object, even modules

 Think of each local scope as representing a code object

 We translate Python bytecode to equivalent MSIL

 Python’s bytecode is very CISC and type-agnostic, so a single opcode generates a 
lot of IR

 Both MSIL and Python bytecode is stack-based (although Python has two stacks)

 Uses an abstract interpreter to gather details on the code

 Used to infer types from both type literals and syntactic operations on inferred 
types

 Basic escape analysis to know when float and integer literals can be treated 
natively before needing to be boxed at the Python level

 Plans to add more features



High-level overview

 Use CPython’s C API to maintain compatibility

 Emit IR to directly call the C API as necessary

 Has allowed for faster bootstrapping by avoiding the need to translate all 

operations into MSIL

 Long-term this is not an optimal solution in all cases as emitting JIT code should 

(theoretically) lead to better performance than calling into C code



Changes to CPython’s C API

 InterpreterState->eval_frame

 Function pointer with the same call signature as PyEval_EvalFrameEx()

 Current PyEval_EvalFrameEx() gets renamed to PyEval_EvalFrameDefault()

 PyEval_EvalFrameEx() ends up calling interp->eval_frame()

 PyCodeObject->co_extra

 Scratch space for frame evaluation function

 Simply a PyObject* so memory management is simple



Pyjion’s use of the code object

scratch space

 j_run_count

 How many times the code object has been executed

 j_failed

 Flag signaling to not bother trying to JIT compile the code object

 j_evalfunc

 Trampoline to either trace types or execute JIT-compiled code

 j_evalstate

 Opaque pointer to JIT-compiled code

 j_specialization_threshold

 Execution count threshold to take any type tracing results into account



Bumps in the road

 CPython has two stacks while CoreCLR JIT has one

 CPython has one for execution, other for exception handling

 Makes it tricky to have to store things locally in JIT that would normally have gone on 
the second stack in CPython

 CPython has a few opcodes that result in a non-constant number of items on the 
stack

 CoreCLR JIT forbids having anything left on the stack when you exit a frame

 Exception handling opcodes can vary what is left on the stack based on arguments

 Curse you, END_FINALLY!

 Iteration opcodes leave something on the stack after every iteration

 Another issue thanks to the CoreCLR JIT forbidding leaving anything on the stack

 Cure you, FOR_ITER/GET_ITER!



Bumps in the road

 Error checking everywhere since we have to account for potentially raised 

exceptions at any point Python code is executed

 Tough to balance cost of compiling versus execution cost

 Really small functions are not necessarily worth the overhead of the JIT 

compilation plus any overhead in execution



Performance
Because people like numbers, no matter how alpha your code is.



-65%

-25%

-3%

0% 0% 0% 0% 2% 2%

105%

155%

337%

-100%

-50%

0%

50%

100%

150%

200%

250%

300%

350%

400%

Execution time difference (CPython is baseline; larger negative is better)

Default benchmarks (and then some)
compared against CPython 3.5

spectral_norm

richards

unpickle_list

regex_v8

fastpickle

fastunpickle

json_dump_v2

nbody

json_load

django_v3

tornado_http

2to3



A more general performance picture

Out of 41 benchmarks, the average 

performance showed …

14 benchmarks are slower

12 are statistically the same

15 are faster



Future optimization possibilities

 We currently do very few type optimizations

 E.g. only optimize ints and floats in a specific order

 Python 3.6 should open new possibilities

 New opcodes open up possibility of optimizing more things

 Dict versioning would allow for watching namespaces and caching objects

 Caching might come into CPython itself which we could leverage



When?

 PEP for changes in CPython is out for review

 This is the most critical aspect of the whole project!

 Without this then Pyjion will forever be a modified CPython interpreter and that 

isn’t sustainable

 Pyjion is compatible enough today

 Basically you can’t see all local variables when debugging, but compatible 

otherwise

 Not tested w/ other projects yet, though

 C++ framework for JITs is still just an idea

 Designed the base C++ classes for this, but it’s still evolving and we haven’t 

worried about locking anything down



Q&A
https://github.com/Microsoft/Pyjion

We’re hiring: pythonjobs@microsoft.com

https://github.com/Microsoft/Pyjion

