Pyjion

Brett Cannon & Dino Viehland, Microsoft (Azure Data Science Tools)

https://github.com/microsoft/pyjion

https://github.com/microsoft/pyjion

What are we trying to do?

Introduce a JIT API to CPython

... we hope ©

3 overall goals

1. Introduce a C APl to CPython for “plugging in” a JIT
1. Needs to allow for full backwards-compatibility, else not useful
2. All of this is dependent on python-dev accepting the C API proposal
2. Develop a proof-of-concept JIT for CPython using the CoreCLR JIT
1. Needs to be faster for some workloads to show benefit

2. Needs to be backwards-compatible (enough) to work with extension modules

3. Create a C++ framework for CPython JITs to build off of

1. Abstracts out the common stuff when it comes to working with CPython’s bytecode

2. Entirely optional and just a nicety for other (potential) JIT authors

Because faster is always nicer

... especially when it’s already compatible with your stuff.

How does this compare to ... ?

PyPy Pyston
» Toolchain to generate a JIT » Alpha-quality VM from Dropbox
» Includes an implementation for that uses 3 execution tiers
Python » AST (which is really a CFG)
» Currently considered the fastest » Baseline JIT
implementation of Python > LLVM JIT

» Does not work with all C extension
modules

> CFFI » Works w/ extension modules
» Partial C API support Dropbox cares about

» Re-uses large portions of CPython
to keep compatibility

How does this compare to ... ?

Numba Psyco & Unladen Swallow

» Numeric-specific JIT sponsored by » Both projects tried to add a JIT to
Continuum Analytics CPython

» You decorate any functions or » Pysco was retired and helped lead
methods you wish to pass to the to PyPy
LLVM JIT

» Unladen Swallow was shut down
» Supports GPUs after a year of fighting with bugs in
LLVM

» Was sponsored by Google

High-level overview

» JIT at the code object level
» All executed code in Python is from a code object, even modules

» Think of each local scope as representing a code object

» We translate Python bytecode to equivalent MSIL

» Python’s bytecode is very CISC and type-agnostic, so a single opcode generates a
lot of IR

» Both MSIL and Python bytecode is stack-based (although Python has two stacks)
» Uses an abstract interpreter to gather details on the code

» Used to infer types from both type literals and syntactic operations on inferred
types

» Basic escape analysis to know when float and integer literals can be treated
natively before needing to be boxed at the Python level

» Plans to add more features

High-level overview

» Use CPython’s C APl to maintain compatibility
» Emit IR to directly call the C API as necessary

» Has allowed for faster bootstrapping by avoiding the need to translate all
operations into MSIL

» Long-term this is not an optimal solution in all cases as emitting JIT code should
(theoretically) lead to better performance than calling into C code

Changes to CPython’s C API

» InterpreterState->eval frame
» Function pointer with the same call signature as PyEval EvalFrameEx()
» Current PyEval EvalFrameEx() gets renamed to PyEval EvalFrameDefault()
» PyEval EvalFrameEx() ends up calling interp->eval frame()
» PyCodeObject->co_extra
» Scratch space for frame evaluation function

» Simply a PyObject* so memory management is simple

Pyjion’s use of the code object
scratch space

» Jj_run_count
» How many times the code object has been executed
» j failed
» Flag signaling to not bother trying to JIT compile the code object
» Jj_evalfunc
» Trampoline to either trace types or execute JIT-compiled code
» Jj _evalstate
» Opaque pointer to JIT-compiled code
» Jj _specialization_threshold

» Execution count threshold to take any type tracing results into account

Bumps in the road

» CPython has two stacks while CoreCLR JIT has one
» CPython has one for execution, other for exception handling

» Makes it tricky to have to store things locally in JIT that would normally have gone on
the second stack in CPython

» CPython has a few opcodes that result in a non-constant number of items on the
stack

» CoreCLR JIT forbids having anything left on the stack when you exit a frame
» Exception handling opcodes can vary what is left on the stack based on arguments
» Curse you, END FINALLY!
» Iteration opcodes leave something on the stack after every iteration
» Another issue thanks to the CoreCLR JIT forbidding leaving anything on the stack

» Cure you, FOR ITER/GET_ ITER!

Bumps in the road

» Error checking everywhere since we have to account for potentially raised
exceptions at any point Python code is executed

» Tough to balance cost of compiling versus execution cost

» Really small functions are not necessarily worth the overhead of the JIT
compilation plus any overhead in execution

Performance

Because people like numbers, no matter how alpha your code is.

Default benchmarks (and then some)
compared against CPython 3.5
400%

350% 337%

spectral_norm 300%

richards

unpickle_list 250%
mregex_v8 200%
m fastpickle 155%
m fastunpickle 150%
® json_dump_v2 105%
® nbody 100%
® json_load 50%
= django_v3 0% 0% 0% 0% 2% 2%
m tornado_http 0%
m 2to3 3%

50% -25%
-65%
-100%

Execution time difference (CPython is baseline; larger negative is better)

A more general performance picture

»Out of 41 benchmarks, the average
performance showed ...

» 14 benchmarks are slower
»12 are statistically the same
»15 are faster

Future optimization possibilities

» We currently do very few type optimizations
» E.g. only optimize ints and floats in a specific order
» Python 3.6 should open new possibilities
» New opcodes open up possibility of optimizing more things
» Dict versioning would allow for watching namespaces and caching objects

» Caching might come into CPython itself which we could leverage

When?

» PEP for changes in CPython is out for review
» This is the most critical aspect of the whole project!

» Without this then Pyjion will forever be a modified CPython interpreter and that
isn’t sustainable

» Pyjion is compatible enough today

» Basically you can’t see all local variables when debugging, but compatible
otherwise

» Not tested w/ other projects yet, though
» C++ framework for JITs is still just an idea

» Designed the base C++ classes for this, but it’s still evolving and we haven’t
worried about locking anything down

Q&A

https://github.com/Microsoft/Pyjion

We’re hiring: pythonjobs@microsoft.com

https://github.com/Microsoft/Pyjion

