
Pyjion
Brett Cannon & Dino Viehland, Microsoft (Azure Data Science Tools)

https://github.com/microsoft/pyjion

https://github.com/microsoft/pyjion


What are we trying to do?



Introduce a JIT API to CPython
… we hope 



3 overall goals

1. Introduce a C API to CPython for “plugging in” a JIT

1. Needs to allow for full backwards-compatibility, else not useful

2. All of this is dependent on python-dev accepting the C API proposal

2. Develop a proof-of-concept JIT for CPython using the CoreCLR JIT

1. Needs to be faster for some workloads to show benefit

2. Needs to be backwards-compatible (enough) to work with extension modules

3. Create a C++ framework for CPython JITs to build off of

1. Abstracts out the common stuff when it comes to working with CPython’s bytecode

2. Entirely optional and just a nicety for other (potential) JIT authors



Why?



Because faster is always nicer
… especially when it’s already compatible with your stuff.



How does this compare to … ?

PyPy

 Toolchain to generate a JIT

 Includes an implementation for 

Python

 Currently considered the fastest 

implementation of Python

 Does not work with all C extension 

modules

 CFFI

 Partial C API support

Pyston

 Alpha-quality VM from Dropbox 

that uses 3 execution tiers

 AST (which is really a CFG)

 Baseline JIT

 LLVM JIT

 Re-uses large portions of CPython 

to keep compatibility

 Works w/ extension modules 

Dropbox cares about



How does this compare to … ?

Numba

 Numeric-specific JIT sponsored by 

Continuum Analytics

 You decorate any functions or 

methods you wish to pass to the 

LLVM JIT

 Supports GPUs

Psyco & Unladen Swallow

 Both projects tried to add a JIT to 

CPython

 Pysco was retired and helped lead 

to PyPy

 Unladen Swallow was shut down 

after a year of fighting with bugs in 

LLVM

 Was sponsored by Google



How?



High-level overview

 JIT at the code object level

 All executed code in Python is from a code object, even modules

 Think of each local scope as representing a code object

 We translate Python bytecode to equivalent MSIL

 Python’s bytecode is very CISC and type-agnostic, so a single opcode generates a 
lot of IR

 Both MSIL and Python bytecode is stack-based (although Python has two stacks)

 Uses an abstract interpreter to gather details on the code

 Used to infer types from both type literals and syntactic operations on inferred 
types

 Basic escape analysis to know when float and integer literals can be treated 
natively before needing to be boxed at the Python level

 Plans to add more features



High-level overview

 Use CPython’s C API to maintain compatibility

 Emit IR to directly call the C API as necessary

 Has allowed for faster bootstrapping by avoiding the need to translate all 

operations into MSIL

 Long-term this is not an optimal solution in all cases as emitting JIT code should 

(theoretically) lead to better performance than calling into C code



Changes to CPython’s C API

 InterpreterState->eval_frame

 Function pointer with the same call signature as PyEval_EvalFrameEx()

 Current PyEval_EvalFrameEx() gets renamed to PyEval_EvalFrameDefault()

 PyEval_EvalFrameEx() ends up calling interp->eval_frame()

 PyCodeObject->co_extra

 Scratch space for frame evaluation function

 Simply a PyObject* so memory management is simple



Pyjion’s use of the code object

scratch space

 j_run_count

 How many times the code object has been executed

 j_failed

 Flag signaling to not bother trying to JIT compile the code object

 j_evalfunc

 Trampoline to either trace types or execute JIT-compiled code

 j_evalstate

 Opaque pointer to JIT-compiled code

 j_specialization_threshold

 Execution count threshold to take any type tracing results into account



Bumps in the road

 CPython has two stacks while CoreCLR JIT has one

 CPython has one for execution, other for exception handling

 Makes it tricky to have to store things locally in JIT that would normally have gone on 
the second stack in CPython

 CPython has a few opcodes that result in a non-constant number of items on the 
stack

 CoreCLR JIT forbids having anything left on the stack when you exit a frame

 Exception handling opcodes can vary what is left on the stack based on arguments

 Curse you, END_FINALLY!

 Iteration opcodes leave something on the stack after every iteration

 Another issue thanks to the CoreCLR JIT forbidding leaving anything on the stack

 Cure you, FOR_ITER/GET_ITER!



Bumps in the road

 Error checking everywhere since we have to account for potentially raised 

exceptions at any point Python code is executed

 Tough to balance cost of compiling versus execution cost

 Really small functions are not necessarily worth the overhead of the JIT 

compilation plus any overhead in execution



Performance
Because people like numbers, no matter how alpha your code is.



-65%

-25%

-3%

0% 0% 0% 0% 2% 2%

105%

155%

337%

-100%

-50%

0%

50%

100%

150%

200%

250%

300%

350%

400%

Execution time difference (CPython is baseline; larger negative is better)

Default benchmarks (and then some)
compared against CPython 3.5

spectral_norm

richards

unpickle_list

regex_v8

fastpickle

fastunpickle

json_dump_v2

nbody

json_load

django_v3

tornado_http

2to3



A more general performance picture

Out of 41 benchmarks, the average 

performance showed …

14 benchmarks are slower

12 are statistically the same

15 are faster



Future optimization possibilities

 We currently do very few type optimizations

 E.g. only optimize ints and floats in a specific order

 Python 3.6 should open new possibilities

 New opcodes open up possibility of optimizing more things

 Dict versioning would allow for watching namespaces and caching objects

 Caching might come into CPython itself which we could leverage



When?

 PEP for changes in CPython is out for review

 This is the most critical aspect of the whole project!

 Without this then Pyjion will forever be a modified CPython interpreter and that 

isn’t sustainable

 Pyjion is compatible enough today

 Basically you can’t see all local variables when debugging, but compatible 

otherwise

 Not tested w/ other projects yet, though

 C++ framework for JITs is still just an idea

 Designed the base C++ classes for this, but it’s still evolving and we haven’t 

worried about locking anything down



Q&A
https://github.com/Microsoft/Pyjion

We’re hiring: pythonjobs@microsoft.com

https://github.com/Microsoft/Pyjion

