
BASICS OF MEMORY
MANAGEMENT IN PYTHON

Nina Zakharenko

WHY SHOULD YOU CARE?
Knowing about memory
management helps you write more
efficient code.

WHAT WILL YOU GET?
∎ Vocabulary
∎ Basic Concepts
∎ Foundation

WHAT WON’T YOU GET?
You won’t be an expert at the end
of this talk.

WHAT’S A
VARIABLE?

What’s a C-style variable?

Memory
variable location Value

a 0x3E8 101

b 0x3E9 101

These values live in a fixed
size bucket.

Can only hold same-sized
data, or an overflow occurs.

What’s a C-style variable?

Memory
location Value

0x3E8 101

0x3E9 101

Later…
110

The data in this
memory location is

overwritten.

PYTHON
HAS NAMES,

NOT
VARIABLES

How are python objects stored in memory?

names

references

objects

A name is just a label
for an object.
In python, each object can have
lots of names.

Simple
• numbers
• strings

Different Types of Objects

Containers
•dict	
•list	
• user defined-

classes

What is a reference?
A name or a container object
pointing at another object.

What is a
reference count?

How can we increase the ref count?

300x	=	300

x
references:	1

+1

How can we increase the ref count?

300x	=	300	
y	=	300

x
references:	2

y
+1

How can we increase the ref count?

300

z	=	[300,	300] x

references:	4

y

Decrease Ref Count - del

300x	=	300	
y	=	300	

del	x

references:	1

yx

What does del	do?

The del statement doesn’t delete
objects.

It:
• removes that name as a reference

to that object
• reduces the ref count by 1

Decrease Ref Count - Change Reference

x	=	300	
y	=	300 300

references:0
yy	=	None

Decrease Ref Count - Going out of Scope

def	print_word():	
				word	=	'Seven'	
				print('Word	is	'	+	word)	

ref count +1

‘seven’ is out of
scope.

ref count -1

print_word()

local vs. global namespace

■If refcounts decrease when an object
goes out of scope, what happens to
objects in the global namespace?

■Never go out of scope! Refcount
never reaches 0.

■Avoid putting large or complex
objects in the global namespace.

Every python object
holds 3 things

∎Its type
∎Its value
∎A reference count

PyObject
type integer

refcount 2

value 300

Names References

x
y

x	=	300	
y	=	300

print(id(x))	
>	28501818

print(id(y))	
>	28501818

print	x	is	y	
>	True

* don’t try this in an interactive
environment (REPL)

GARBAGE
COLLECTION

What is Garbage
Collection?
A way for a program to
automatically release memory
when the object taking up that
space is no longer in use.

Two Main Types of Garbage Collection

Reference
Counting

Tracing

How does reference counting garbage
collection work?

Add and Remove References

Refcount Reaches 0

Cascading Effect

The Good

• Easy to Implement
• When refcount is 0,

objects are
immediately deleted.

Reference Counting Garbage Collection

The Bad

• space overhead -
reference count is
stored for every object

• execution overhead -
reference count
changed on every
assignment

The Ugly

• Not generally thread safe
• Reference counting doesn’t detect cyclical

references

Reference Counting Garbage Collection

Cyclical References By Example

class	Node:	
				def	__init__(self,	value):	
								self.value	=	value	

				def	next(self,	next):	
								self.next	=	next

What’s a cyclical reference?

left right

root rc = 1

rc = 3 rc = 2

root	=	Node('root')	
left	=	Node('left')	
right	=	Node(‘right')	

root.next(left)	
left.next(right)	
right.next(left)	

What’s a cyclical reference?

del	root	
del	node1	
del	node2

left right

root rc = 0

rc = 1 rc = 1

Reference counting alone will not
garbage collect objects with cyclical

references.

Two Main Types of Garbage Collection

Reference
Counting

Tracing

Tracing Garbage Collection

■source: http://webappguru.blogspot.com/2015/11/mark-and-sweep-garbage-collection.html

http://webappguru.blogspot.com/2015/11/mark-and-sweep-garbage-collection.html

Tracing Garbage Collection

■source: http://webappguru.blogspot.com/2015/11/mark-and-sweep-garbage-collection.html

http://webappguru.blogspot.com/2015/11/mark-and-sweep-garbage-collection.html

What does Python use?

Reference
Counting Generational+

Generational Garbage Collection is
based on the theory that most

objects die young.

■ source: http://cs.ucsb.edu/~ckrintz/racelab/gc/papers/hoelzle-jvm98.pdf

http://cs.ucsb.edu/~ckrintz/racelab/gc/papers/hoelzle-jvm98.pdf

Python maintains a list of every object
created as a program is run.

Actually, it makes 3.

generation 0
generation 1
generation 2

Newly created objects are stored in generation 0.

Only container objects with a
refcount greater than 0 will be

stored in a generation list.

When the number of objects in a
generation reaches a threshold,

python runs a garbage collection
algorithm on that generation, and
any generations younger than it.

What happens during a generational garbage
collection cycle?

Python makes a list for objects to discard.

It runs an algorithm to detect reference cycles.

If an object has no outside references, it’s put on
the discard list.

When the cycle is done, it frees up the objects on
the discard list.

After a garbage collection cycle,
objects that survived will be

promoted to the next generation.

Objects in the last generation (2)
stay there as the program executes.

When the ref count reaches 0, you
get immediate clean up.

If you have a cycle, you need to wait
for garbage collection.

REFERENCE
COUNTING
GOTCHAS

Reference counting is not generally
thread-safe.

We’ll see why this is a big deal™
later.

Remember our cycle from before?

left rightrc = 1 rc = 1

Cyclical references get cleaned up
by generational garbage collection.

Cyclical Reference Cleanup

Except in python2 if they have a
__del__	method.

**fixed in python 3.4! - https://www.python.org/dev/peps/pep-0442/

Gotcha!

https://www.python.org/dev/peps/pep-0442/

The __del__	magic method

■ Sometimes called a “destructor”

■Not the del statement.

■ Runs before an object is removed
from memory

__slots__

What are __slots__?

class	Dog(object):	
				pass	

buddy	=	Dog()	
buddy.name	=	'Buddy'

print(buddy.__dict__)	

{'name':	'Buddy'}

What are __slots__?

'Pug'.name	=	'Fred'

AttributeError																													
Traceback	(most	recent	call	last)	
---->	1	'Pug'.name	=	'Fred'	

AttributeError:	'str'	object	has	no	attribute	
'name'	

class	Point(object):	
				__slots__	=	('x',	'y')

What are __slots__?

What is the
type of
__slots__?

point.name	=	"Fred"	

Traceback	(most	recent	call	last):	
		File	"point.py",	line	8,	in	<module>	
				point.name	=	"Fred"	
AttributeError:	'Point'	object	has	no	attribute	
'name'

point	=	Point()	
point.x	=	5	
point.y	=	7

size of dict vs. size of tuple

import	sys	

sys.getsizeof(dict())	
sys.getsizeof(tuple())	

sizeof dict: 288 bytes
sizeof tuple: 48 bytes

When would we want to use __slots__?

■ If we’re going to be creating many
instances of a class
■If we know in advance what
properties the class should have

WHAT’S A
GIL?

GLOBAL
INTERPETER

LOCK

Only one thread can run in the
interpreter at a time.

Upside

Fast & Simple Garbage Collection

Advantages / Disadvantages of a GIL

Downside

In a python program, no matter how many
threads exist, only one thread will be
executed at a time.

■Use multi-processing instead of multi-
threading.
■Each process will have it’s own GIL, it’s
on the developer to figure out a way to
share information between processes.

Want to take advantage of multiple CPUs?

If the GIL limits us,
can’t we just remove
it?

additional reading: https://docs.python.org/3/faq/library.html#can-t-we-get-rid-of-the-global-interpreter-lock

https://docs.python.org/3/faq/library.html#can-t-we-get-rid-of-the-global-interpreter-lock

For better or for
worse, the GIL is
here to stay!

WHAT DID
WE LEARN?

Garbage collection is
pretty good.

Now you know how
memory is managed.

Consider
python3

Or, for scientific
applications numpy
& pandas.

Thanks!

@nnja

nina.writes.code@gmail.com

bit.ly/memory_management

mailto:nina.writes.code@gmail.com?subject=
http://bit.ly/memory_management

Bonus
 Material

Additional Reading

• Great explanation of generational garbage collection and python’s
reference detection algorithm.

• https://www.quora.com/How-does-garbage-collection-in-Python-
work

• Weak Reference Documentation
• https://docs.python.org/3/library/weakref.html

• Python Module of the Week - gc
• https://pymotw.com/2/gc/

• PyPy STM - GIL less Python Interpreter
• http://morepypy.blogspot.com/2015/03/pypy-stm-251-

released.html
• Saving 9GB of RAM with python’s __slots__

• http://tech.oyster.com/save-ram-with-python-slots/

https://www.quora.com/How-does-garbage-collection-in-Python-work
https://docs.python.org/3/library/weakref.html
https://pymotw.com/2/gc/
http://morepypy.blogspot.com/2015/03/pypy-stm-251-released.html
http://tech.oyster.com/save-ram-with-python-slots/

Getting in-depth with the GIL

• Dave Beazley - Guide on how the GIL Operates
• http://www.dabeaz.com/python/GIL.pdf

• Dave Beazley - New GIL in Python 3.2
• http://www.dabeaz.com/python/NewGIL.pdf

• Dave Beazley - Inside Look at Infamous GIL Patch
• http://dabeaz.blogspot.com/2011/08/inside-look-at-gil-

removal-patch-of.html

http://www.dabeaz.com/python/GIL.pdf
http://www.dabeaz.com/python/NewGIL.pdf
http://dabeaz.blogspot.com/2011/08/inside-look-at-gil-removal-patch-of.html

Why can’t we use the REPL to follow along at
home?

• Because It doesn’t behave like a typical python
program that’s being executed.

• Further reading: http://stackoverflow.com/questions/
25281892/weird-id-result-on-cpython-intobject

PYTHON PRE-LOADS OBJECTS
• Many objects are loaded by Python as the interpreter

starts.
• Called peephole optimization.
• Numbers: -5 -> 256
• Single Letter Strings
• Common Exceptions
• Further reading: http://akaptur.com/blog/2014/08/02/

the-cpython-peephole-optimizer-and-you/

http://stackoverflow.com/questions/25281892/weird-id-result-on-cpython-intobject
http://akaptur.com/blog/2014/08/02/the-cpython-peephole-optimizer-and-you/

Common Question - Why doesn’t python a
python program shrink in memory after garbage
collection?

• The freed memory is fragmented.
• i.e. It’s not freed in one continuous block.
• When we say memory is freed during garbage

collection, it’s released back to python to use
for other objects, and not necessarily to the
system.

• After garbage collection, the size of the
python program likely won’t go down.

PyListObject
type list

refcount 1

value

size 3

capacity 10

nums
Value -10

refcount 1

type integer

PyObject

Value -9

refcount 2

type integer

PyObject

How does python store container objects?

Credits

Big thanks to:
• Faris Chebib & The Salt Lake City Python Meetup
• The many friends & co-workers who lent me their eyes &

ears, particularly Steve Holden

Special thanks to all the people who made and released
these awesome resources for free:
■ Presentation template by SlidesCarnival
■ Photographs by Unsplash
■ Icons by iconsdb

http://www.meetup.com/SLCPython
https://twitter.com/holdenweb
http://www.slidescarnival.com/
http://unsplash.com/
http://www.iconsdb.com/

