
Diff It To Dig ItDiff It To Dig It
A dive into Python types

By Sep Ehr
zepworks.com

github.com/seperman/deepdiff

April 5 2016

GotGot
Diff?Diff?

Deep Diff
pip install deepdiff

Our goalOur goal
Diff nested objects
Get the path and value of changes
Ignore order on demand
Work with Py2 and py3

Object categories in PyObject categories in Py
1. Text Sequences
2. Numerics
3. Sets
5. Mappings
6. Other Iterables (List, Generator,
Deque, Tuple, Custom Iterables)
7. User Defined Objects

Diff Text Sequences with DifflibDiff Text Sequences with Difflib
>>> import difflib
>>> t1="""
... Hello World!
... """.splitlines()
>>> t2="""
... Hello World!
... It is ice-cream time.
... """.splitlines()
>>> g = difflib.unified_diff(t1, t2, lineterm='')
>>> print('\n'.join(list(g)))

+++
@@ -1,2 +1,3 @@

 Hello World!
+It is ice-cream time.

Diff Sets, FrozensetsDiff Sets, Frozensets

>>> t1 = {1,2,3}
>>> t2 = {3,4,5}
>>> items_added = t2 - t1
>>> items_removed = t1 - t2
>>> items_added
set([4, 5])
>>> items_removed
set([1, 2])

Diff MappingDiff Mapping

t1_keys= set(t1.keys())
t2_keys= set(t2.keys())

same_keys = t2_keys.intersection(t1_keys)

added = t2_keys - same_keys
removed = t1_keys - same_keys

Dict, OrderedDict, Defaultdict

And then recursively check same_keys values

Diff IterablesDiff Iterables

>>> t1 = [1, 2, 3]
>>> t2 = [1, 2, 5, 6]

Consider Order

Diff IterablesDiff Iterables
>>> t1 = [1, 2, 3]
>>> t2 = [1, 2, 5, 6]
>>>
>>> class NotFound(object):
... "Fill value for zip_longest"
... def __repr__(self):
... return "NotFound"
... def __str__(self):
... return "NotFound Str"
...
>>> notfound = NotFound()
>>>
>>> list(zip_longest(t1, t2, fillvalue=notfound))
[(1, 1), (2, 2), (3, 5), (NotFound, 6)]

Consider Order

Diff IterablesDiff Iterables
>>> for (x, y) in zip_longest(t1, t2, fillvalue=NotFound):
... if x != y:
... if y is NotFound:
... removed.append(x)
... elif x is NotFound:
... added.append(y)
... else:
... modified.append("{} -> {}".format(x, y))
...
>>> print removed
[]
>>> print added
[6]
>>> print modified
['3 -> 5']

Consider Order

Diff IterablesDiff Iterables

Ignore Order

Diff IterablesDiff Iterables

>>> t1=[1,2]
>>> t2=[1,3,4]
>>> t1set=set(t1)
>>> t2set=set(t2)
>>> t1set-t2set
{2}
>>> t2set-t1set
{3, 4}

Ignore Order

Diff IterablesDiff Iterables

>>> t1=[1, 2, {3:3}]
>>> t2=[1]
>>> t1set = set(t1)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'dict'

Ignore Order

but ...

A set object is an unordered
collection of distinct hashable

objects.

Mutable vs. Immutable

Mutable vs. Immutable
>>> a=[1,2]
>>> id(a)
400304246
>>> a.append(3)
>>> id(a)
400304246
>>> b=(1,2)
>>> id(b)
399960722
>>> b += (3,)
>>> id(b)
400670561

Hashable

Hashable
__hash__ with output that does NOT
change over object's lifetime.
__eq__ for comparison

Unhashable vs. Mutable

Hashable that is Mutable

>>> class A:
... aa=1
...
>>> hash(A)
2857987
>>> A.aa=2
>>> hash(A)
2857987

Diff IterablesDiff Iterables
Ignore Order: approach 1: sort

>>> t1=[{1:1}, {3:3}, {4:4}]
>>> t2=[{3:3}, {1:1}, {4:4}]
>>> t1.sort()
>>> t1
[{1: 1}, {3: 3}, {4: 4}]
>>> t2.sort()
>>> t2
[{1: 1}, {3: 3}, {4: 4}]
>>> [(a, b) for a, b in zip(t1,t2) if a != b]
[]

Py2

Diff IterablesDiff Iterables
Ignore Order: approach 1: sort

>>> t1=[{1:1}, {3:3}, {4:4}]
>>> t2=[{3:3}, {1:1}, {4:4}]
>>> t1.sort()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unorderable types: dict() < dict()

Py3

Diff IterablesDiff Iterables
Ignore Order: approach 1: sort

Sort key

Diff IterablesDiff Iterables
Ignore Order: approach 1: sort

>>> students = [
 ('john', 'A', 15),
 ('jane', 'B', 12),
 ('dave', 'B', 10),
]
>>> sorted(students, key=lambda s: s[2])
[('dave', 'B', 10),
('jane', 'B', 12),
('john', 'A', 15)]

Diff IterablesDiff Iterables
Ignore Order: approach 1: sort

What to use for sort key to
order list of dictionaries?

Diff IterablesDiff Iterables
Ignore Order: approach 1: sort

Sort key: hash of dictionary contents
>>> from json import dumps
>>> t1=[{1:1}, {3:3}, {4:4}]
>>> t2=[{3:3}, {1:1}, {4:4}]
>>> t1.sort(key=lambda x: hash(dumps(x)))
>>> t2.sort(key=lambda x: hash(dumps(x)))
>>> t1
[{1: 1}, {3: 3}, {4: 4}]
>>> t2
[{1: 1}, {3: 3}, {4: 4}]
>>> [(a, b) for a, b in zip(t1,t2) if a != b]
[]

Py2 & 3

Diff IterablesDiff Iterables
Ignore Order: approach 1: sort

Iterables with different length

Diff IterablesDiff Iterables
Ignore Order: approach 1: sort
iterables with different lengths

>>> import json
>>>
>>> t1=[10, {1:1}, {3:3}, {4:4}]
>>> t1.sort(key=lambda x: hash(json.dumps(x)))
>>>
>>> t2=[{3:3}, {1:1}, {4:4}]
>>> t2.sort(key=lambda x: hash(json.dumps(x)))
>>> t1
[{1: 1}, {3: 3}, {4: 4}, 10]
>>> t2
[{1: 1}, {3: 3}, {4: 4}]

Diff IterablesDiff Iterables
Ignore Order: approach 1: sort
iterables with different lengths

>>> t1=[10, "a", {1:1}, {3:3}, {4:4}]
>>> t1.sort(key=lambda x: hash(dumps(x)))
>>> t1
['a', {1: 1}, {3: 3}, {4: 4}, 10]
>>> t2
[{1: 1}, {3: 3}, {4: 4}]
...

>>> modified
['a -> {1: 1}', '{1: 1} -> {3: 3}',
'{3: 3} -> {4: 4}']

Diff IterablesDiff Iterables
Ignore Order: approach 2: hashtable

Put items in a dictionary of
{item_hash: item}

Diff IterablesDiff Iterables
Ignore Order: approach 2: hashtable

>>> t1 = [10, "a", {1:1}, {3:3}, {4:4}]
>>> t2 = [{3:3}, {1:1}, {4:4}, "b"]
>>> def create_hashtable(t):
... hashes = {}
... for item in t:
... try:
... item_hash = hash(item)
... except TypeError:
... try:
... item_hash = hash(json.dumps(item))
... except:
... pass # For presentation purposes
... else:
... hashes[item_hash] = item
... else:
... hashes[item_hash] = item
... return hashes

Diff IterablesDiff Iterables
Ignore Order: approach 2: hashtable

>>> h1 = create_hashtable(t1)
>>> h2 = create_hashtable(t2)
>>>
>>> items_added = [h2[i] for i in h2 if i not in h1]
>>> items_removed = [h1[i] for i in h1 if i not in h2]
>>>
>>> items_added
['b']
>>> items_removed
['a', 10]

Diff IterablesDiff Iterables
Ignore Order: approach 2: hashtable

What if the object is not json
serializable?

What if json serializable version
of 2 different objects are the

same?

Diff IterablesDiff Iterables
Ignore Order: approach 2: hashtable

PicklePickle

Diff IterablesDiff Iterables
Ignore Order: approach 2: hashtable

>>> from pickle import dumps
>>> t = ({1: 1, 2: 4, 3: 6, 4: 8, 5: 10},
'Hello World', (1, 2, 3, 4, 5), [1, 2, 3, 4, 5])
>>> dumps(t)
"((dp0\nI1\nI1\nsI2\nI4\nsI3\nI6\nsI4\nI8\nsI5\
nI10\nsS'Hello World'\np1\n(I1\nI2\nI3\nI4\nI5\
ntp2\n(lp3\nI1\naI2\naI3\naI4\naI5\natp4\n."
>>> dumps(({1: 1, 2: 4, 3: 6, 4: 8, 5: 10},
 'Hello World', (1, 2, 3, 4, 5),
 [1, 2, 3, 4, 5]))
"((dp0\nI1\nI1\nsI2\nI4\nsI3\nI6\nsI4\nI8\nsI5\
nI10\nsS'Hello World'\np1\n(I1\nI2\nI3\nI4\nI5
\ntp2\n(lp3\nI1\naI2\naI3\naI4\naI5\natp4\n."

Diff IterablesDiff Iterables
Ignore Order: approach 2: hashtable

>>> from cPickle import dumps
>>> t = ({1: 1, 2: 4, 3: 6, 4: 8, 5: 10},
'Hello World', (1, 2, 3, 4, 5), [1, 2, 3, 4, 5])
>>> dumps(t)
"((dp1\nI1\nI1\nsI2\nI4\nsI3\nI6\nsI4\nI8\nsI5\n
I10\nsS'Hello World'\np2\n(I1\nI2\nI3\nI4\nI5\n
tp3\n(lp4\nI1\naI2\naI3\naI4\naI5\nat."
>>> dumps(({1: 1, 2: 4, 3: 6, 4: 8, 5: 10},
 'Hello World', (1, 2, 3, 4, 5),
 [1, 2, 3, 4, 5]))
"((dp1\nI1\nI1\nsI2\nI4\nsI3\nI6\nsI4\nI8\nsI5\n
I10\nsS'Hello World'\n(I1\nI2\nI3\nI4\nI5\nt(lp2
\nI1\naI2\naI3\naI4\naI5\natp3\n."

What about cPIckle? It is faster than Pickle!

Diff IterablesDiff Iterables
Ignore Order: approach 2: hashtable

cPickle includes if the object is
referenced in the

serialization!

Diff IterablesDiff Iterables
Ignore Order: approach 2: hashtable

Note 2: Pickle does not include
class attributes

class Foo:
 attr = 'not in pickle'
picklestring = pickle.dumps(Foo)

Diff IterablesDiff Iterables
Ignore Order: approach 2: hashtable

Do we care?
No

Not in Deep Diff

Diff IterablesDiff Iterables

What did we learn from diffing iterables?

- Difference of unhashable and mutable
- Sets can only contain hashable

- Create hash for dictionary
- Custom sorting with a key function

- Converting a squence into hashtable
- Pickling

Diff Custom ObjectsDiff Custom Objects

__dict__

Diff Custom ObjectsDiff Custom Objects

>>> class CL:
... attr1 = 0
... def __init__(self, thing):
... self.thing = thing

>>> obj1 = CL(1)
>>> obj2 = CL(2)
>>> obj2.attr1 = 10
>>> obj1.__dict__
{'thing': 1} # Notice that att1 is not here
>>> obj2.__dict__
{'attr1': 10, 'thing': 2}

Diff Custom ObjectsDiff Custom Objects

__slots__

Diff Custom ObjectsDiff Custom Objects

>>> class ClassA(object):
... __slots__ = ['x', 'y']
... def __init__(self, x, y):
... self.x = x
... self.y = y
...
>>> t1 = ClassA(1, 1)
>>> t2 = ClassA(1, 2)
>>>
>>> t1.new = 10
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'ClassA' object has no attribute 'new'

Diff Custom ObjectsDiff Custom Objects

>>> t1 = {i: getattr(t1, i) for i in t1.__slots__}
>>> t2 = {i: getattr(t2, i) for i in t2.__slots__}
>>> t1
{'x': 1, 'y': 1}
>>> t2
{'x': 1, 'y': 2}

Diff Custom ObjectsDiff Custom Objects

>>> class LoopTest(object):
... def __init__(self, a):
... self.loop = self
... self.a = a
...
>>> t1 = LoopTest(1)
>>> t2 = LoopTest(2)
>>> t1
<__main__.LoopTest object at 0x02B9A910>
>>> t1.__dict__
{'a': 1, 'loop': <__main__.LoopTest object at 0x02B9A910>}

Loops

Diff Custom ObjectsDiff Custom Objects

Detect Loop with ID

A --> B --> C --> A
11 --> 23 --> 2 --> 11

Diff Custom ObjectsDiff Custom Objects
Detect Loop with ID

def diff_common_children_of_dictionary(t1, t2,
 t_keys_intersect, parents_ids):

 for item_key in t_keys_intersect:

 t1_child = t1[item_key]
 t2_child = t2[item_key]

 item_id = id(t1_child)

 if parents_ids and item_id in parents_ids:
 print ("Warning, a loop is detected.")
 continue

 parents_added = set(parents_ids)
 parents_added.add(item_id)
 parents_added = frozenset(parents_added)

 diff(t1_child, t2_child, parents_ids=parents_added)

Diff Custom ObjectsDiff Custom Objects
What did we learn about diffing custom

objects

__dict__ or __slots__
Then diff as dictionary
Objects can point to self or
parent
Detecting loops with IDs

Why DiffWhy Diff

Debugging
Testing, assertEqual with diff
Emotional Stability

Deep DiffDeep Diff

Zepworks.com
https://github.com/seperman/deepdiff

