Prerequisites

1. A Github account with an SSH key

https://help.qithub.com/articles/generating-ssh-keys/

2. If you want to develop on your machine:
3. pip and virtualenv
4, qit
5. (Optional) Fork and clone our repo!

https://qgithub.com/keeppythonweird/catinabox

@mtomwing pycon 2016

ye)
Op 7 s
0: O ry
Rep on
/(
Y
/
¢

@bobcatwilson

https://help.github.com/articles/generating-ssh-keys/
https://help.github.com/articles/generating-ssh-keys/
https://github.com/keeppythonweird/catinabox
https://github.com/keeppythonweird/catinabox

Intro to Unit Testing In
Python with PyTest

Michael Tom-Wing @mtomwing

Christie Wilson @bobcatwilson

Al
A\l

P (

Obligatory Plug

Software Engineers @ Demonware
Video Game Industry

Owned by Activision

Online services for games

CRLI'DUTY

DESTINY

T N

| i AR

= ,, NS/

DEMONWARE

NOW ON TO TESTING!

keeppythonweird @bobcatwilson

Al
N
” A
"4

: Welcome to our tutorial!!l!

Let’s find out a bit about why we're all here

What's your role?

http://www.strawpoll.me/10337223

Have you written a test before?

http://www.strawpoll.me/10337208

How much Python experience do you have?

http://www.strawpoll. me/10337237

@mtomwing pycon 2016

http://www.strawpoll.me/10337223
http://www.strawpoll.me/10337223
http://www.strawpoll.me/10337208
http://www.strawpoll.me/10337208
http://www.strawpoll.me/10337237
http://www.strawpoll.me/10337237

Schedule

What is a test?

Initial environment setup

What are unit tests?

Write some tests.

What is test automation?

Run your tests through our automation.
What are some advanced testing techniques?
Write some tests using those techniques.
Q&A

@mtomwing pycon 2016

A\f‘

Learning Outcomes

What tests are and why they are important

What unit tests are and why you should write them
How to approach writing unit tests

Why you need test automation and some options
Some ways to measure code / test quality
Mocking, fixtures, and parametrization - oh my!
Refactoring for unit testability

Hopefully none of our bad habits :)

g pycon 2016 @bobcatwilson

What is a test?

e Specifies how your software is intended to work
e Can be run against your software to verify it

S

@mtomwing pycon 2016

Why test?

e |ncrease:
o Trust
o Confidence
e You will never be 100% confident!

e But you can be 60% confident. G }

@mtomwing pycon 2016

Types of tests

e Specifying and running tests for everything is:
o Hard to maintain
o Slow
o Hard to write

@mtomwing pycon 2016

Types of tests

e Unit tests
o Test ‘isolated units’
m e.g. a method or function
o Super high coverage
o Most of the tests

e Integration tests
o Combine units and test them together

o Fill in the cracks between the tests

@ e System tests
’1 o Test with everything plugged together and

configured as expected
o From the end user’s perspective

’ e Acceptance tests

o Test the customer’'s use cases

g pycon 2016 @bobcatwilson

Types of tests

pycon 2016

@bobcatwilson

Tutorial: Setup and run existing tests

e https://qgithub.com/keeppythonweird/catinabox/

e Follow along with /steps/1-run_tests.md
o Setup a virtualenv
o Run the existing tests

pycon 2016 @bobcatwilson

https://github.com/keeppythonweird/catinabox/
https://github.com/keeppythonweird/catinabox/

Optional - Use PythonAnywhere

e Sign up for an account (the beginner tier is free!)
e Start a bash session

e Create an SSH key and upload it to Github
o $ ssh-keygen
o < hit enter a bunch of times >
o $cat.ssh/id_rsa.pub
o < copy the output to Github>

e Continue with the originally instructions at the “clone our repo” step

e
&

g pycon 2016 @bobcatwilson

Coverage

Statement coverage == “Was this line executed?”

do_stuff()

th == 2): statement

more_stuff()

decision

condition

pycon 2016 @bobcatwilson

Unit Tests

e People often love or hate unit tests.
e But they are neutral, like brushing your teeth

@mtomwing pycon 2016

What are unit tests good for?

Finding bugs DURING development

A design tool

Writing maintainable code
Documenting a developer’s intentions
Running quickly

@mtomwing pycon 2016

What are unit tests not good for?

Finding bugs

Indicating that your application is functioning correctly
Testing glue code

Testing every possible permutation

;\/-fl

P
A

Tests Pass!

@mtomwing pycon 2016

Unit tests ARE NOT for preventing bugs

@mtomwing pycon 2016

Unit tests ARE for
writing clean maintainable code with confidence

\C
S
J

@mtomwing pycon 2016

Generating test cases \(

e Think about possible input
e Categorize the input into special cases
e One test per special case

OVl Ving pycon 2016 @bobcatwilson

How would we test this? - #1

(sequence):

sequence == sequence |: ..

O Ving pycon 2016 @bobcatwilson

How would we test this?

(sequence):

sequence sequence[::-1]

e Input which IS a palindrome
e Input which is NOT a palindrome

O Ving pycon 2016 @bobcatwilson

Trusting sources of input e

me (sequence) :

sequence == sequence[::-1]

e What if the wrong type of data is passed in?
e What if the sequence is extremely large?
e Depends:

o Where the input is coming from
o Where you implement validation

g pycon 2016 @bobcatwilson

How would we test this? - #2

def is_leap_year(year):
""MReturns True iff. year is a leap year.

This algorithm was shamelessly copied from Wikipedia.
nmmnn
if year % 4 = 0:
return False
elif year % 100 !=
return True
elif year % 400 != 0:
return False
else:
return True

pycon 2016 @bobcatwilson

How would we test this? - #2

def is_leap_year(year):
""MReturns True iff. year is a leap year.

This algorithm was shamelessly copied from Wikipedia.
MmN
if year % 4 = 0:
return False
elif year % 100 !=
return True is_leap_year(2004) == True
elif year % 400 != 0:
return False is leap _year(1900) == False
else:
return True is leap _year(2000) == True

is_leap _year(1757) == False

pycon 2016 @bobcatwilson

Python Unit Testing

unittest module
e Comes with the standard library
e Typically will do basically everything you need
e self.assertEqual(result, “cats”)

pytest module

S pip install pytest

Provides everything that unittest does but with more batteries included!
Less boilerplate thanks to magical fixtures.

Assertions are more natural and do not require custom invocation.
assert result == “cats”

We'll be using pytest in this tutorial.

@mtomwing pycon 2016 DO llson

pytest - how to

1. $ pip install pytest
2. Create a module to hold your test (e.g. test_cool_stuff.py).
3. Write the test.

4. Run the test.

$ py.test test_cool_stuff.py
test session starts
platform linux -- Python 3.4.3
rootd-ir:
plugins: cov, pep8, cache
collected 1 1items

test_cool_stuff.py

@mtomwing pycon 2016

pytest - how to continued

pytest will treat any function whose name starts with test_ a test.
Same goes for test modules.

We can use plain old Python assert to test that things are as we expected them to
be.

@mtomwing pycon 2016

Unit Test Structure

1. Define your inputs and any preconditions.
2. Invoke the thing.
3. Verify that it did what you expected.

TL;DR a test is an easy way for you to quantify what it means for your thing to
“work”.

se(items):
items[::-1]

reverse('al

reverse([

pycon 2016 @bobcatwilson

PEP8

e |t's a coding standard
e Prescribes things like:

O

(@)
@)
(@)
@)

< 80 character lines

2 new lines between functions in a module
1 new line between methods in a class

Visual indentation rules
... and more!

oy

pycon 2016

PEPS8 isn’t the only standard out there! (see Google's Python Style Guide)
Main thing is to be consistent with the codebase

Our tests will fail if py.test finds any PEP8 violations :)
https://www.python.org/dev/peps/pep-0008/

@bobcatwilson

https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/

Tutorial: Write your first test

e https://github.com/keeppythonweird/catinabox

e Follow along with steps/2-simple_function.md
o Finish writing the tests in test_catmath.py

pycon 2016 @bobcatwilson

https://github.com/keeppythonweird/catinabox
https://github.com/keeppythonweird/catinabox

Test Automation

e You should run your
tests regularly!

@mtomwing pycon 2016 son

Test Automation - System tests

e Reduce developer burden

o Slower
o More difficult to set up

@mtomwing pycon 2016

Travis CI

e Cl = Continuous Integration
e Third party service that will “build” your Github projects

o “build” = “run the tests” in our case
e Free for open source projects
e We won't be covering setting up Travis, but rest assured it is very
simple!
e Other Cl services are available
(e.g. Atlassian’s Bamboo)
e https://travis-ci.org/keeppythonweird/catinabox

pycon 2016 @bobcatwilson

https://travis-ci.org/keeppythonweird/catinabox
https://travis-ci.org/keeppythonweird/catinabox

Coveralls

Third-party service for measuring statement coverage of your Github project
Free for open source projects

Track changes in coverage over time
https://coveralls.io/github/keeppythonweird/catinabox

COVERALLS LN

pycon 2016 @bobcatwilson

https://coveralls.io/github/keeppythonweird/catinabox
https://coveralls.io/github/keeppythonweird/catinabox

Other Testable Aspects

e Sometimes it's also worth adding other checks to your testing pipeline.
e Static Analysis: Done entirely offline - without running your code
e Cyclomatic Complexity
o A measure of how complex a function is
o Checks that functions “aren’t too complex”
o S pip install pytest-mccabe
e PEPS
o Checks for PEP8 compliance
o § pip install pytest-pep8
e Pyflakes
o Checks for syntax errors
o S pip install pytest-flakes

e You can have these run before your tests
in order to fail fast!

@mtomwing pycon 2016 DOD llson

Tutorial: Create a pull request

e https://github.com/keeppythonweird/catinabox

e Follow along with steps/3-pull.md

o Commit your new tests
o Create a pull request from your fork

BONUS!

e If you finish early, review the other pull requests
o Be respectful and positive
o This presentation has great tips for effective code reviews:
m http://confreaks.tv/videos/railsconf2015-implementing-a-strong-code-review-culture

pycon 2016 @bobcatwilson

https://github.com/keeppythonweird/catinabox
https://github.com/keeppythonweird/catinabox
http://confreaks.tv/videos/railsconf2015-implementing-a-strong-code-review-culture
http://confreaks.tv/videos/railsconf2015-implementing-a-strong-code-review-culture

Trusting sources of input

e What if we didn't trust the input?
e What other test cases might we have for
cat_years_to_hooman_years?

@mtomwing pycon 2016

Generating test cases

<0

0

Fraction of a year
Most ages

> 1000

Wrong data type
NaN

@mtomwing

pycon 2016

pytest - Testing for exceptions

e pytest.raises

21 4+ 2

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: Can't convert 'int' object to str implicitly

> Amport pytest
> with pytest.raises(TypeError):

151 -~
2" + 2

@mtomwing pycon 2016 son

Advanced cat hooman

e catinabox/safecatmath.py
e Now checks that age_in_cat_years is an int or float.
e Also makes sure the cat is not too young or too old.

(age_in_cat_years, (1

InvalidAge(age_1in_cat_years)

<= age_1n_cat_years <= MAX_CAT_AGE:

InvalidAge(age_1in_cat_years)

@mtomwing pycon 2016

Tutorial: Testing incorrect input

e https://github.com/keeppythonweird/catinabox
e Follow along with steps/4-input.md

pycon 2016 @bobcatwilson

https://github.com/keeppythonweird/catinabox
https://github.com/keeppythonweird/catinabox

pytest - fixtures

Fixtures are a way to define reusable components that are required by your tests.
Pytest will automagically hook up your fixtures to your tests (or other fixtures!)

that require them.

2 L)

CDDTStuff{}

s(cool_stuff):
cool _stuff.is cool ==

See https://pytest.org/latest/builtin.html| for more information on the built-in
fixtures provided by pytest.

g pycon 2016 @bobcatwilson

https://pytest.org/latest/builtin.html

pytest - fixtures continued

By default, fixtures are recreated for every test that requires them.

rs(cool_stuff):

cool_stuff[0O]
cool_stuff == [2]

the 'S _aj (cool_stuff):
cool_stuff[1]
cool_stuff == [1]

It is possible to control the lifetime of a fixture (e.g. create it once for all the tests),
but that is out of scope for today! See htips://pytest.org/latest/fixture.html.

g pycon 2016 @bobcatwilson

https://pytest.org/latest/fixture.html

Tutorial: Testing classes with fixtures

e https://qgithub.com/keeppythonweird/catinabox
e Follow along with steps/5-classes.md

pycon 2016 @bobcatwilson

https://github.com/keeppythonweird/catinabox
https://github.com/keeppythonweird/catinabox

. . . "
Unit testing and state of the outside world ' - .

K

e What if you want to test functionality that:
O Uses the current time/sleeps
O Depends on an external service (e.g. an HTTP server or DB)
O Uses random

e Super easy in Python!!!

@mtomwing pycon 2016 DO llson

N—
Mocking %

Create “mock” objects that mimic the external objects/functions

e You can control their behaviour completely!

o Return whatever time you want

Pretend to sleep

Return fake DB or HTTP results

Return deterministic results instead of random

e Verify arguments used
Verify that everything is plugged together correctly

o Test the true behaviour later with system tests

o O O

@mtomwing pycon 2016 DO llson

Mocking .

e mock
o pip install mock

e Included in the Python 3 standard lib

import mock

obj = mock.MagicMock()

value = obj[5]
value = obj.fool()

obj.foo.call_count
|

@mtomwing pycon 2016 DOD ilson

Mocking ¢

e mock

value = obj.bar(6)
obj.bar.assert_called_with(6)

obj.bar.assert_called_with(7)

Traceback (most recent call last)
won=input=-8-c79 7ec7980> in <module>
> 1 obj bar.assert_called_with(7

fLibrary/Python/2.7/site-packages/mock,
935 if expected actual
936 cause expected if isinstance expected, Exception
93 six. raise_from AssertionError/ _error_message cause

in assert_called_with

938
939
Library/Pythi 7/site-packages/six.pyc in raise_from
716 else
717 def raise_from value. from_value
» 718 ise value
719
728
: Expected call: bar(7)
Actual call: bar(6)

@mtomwing pycon 2016

Patching

e Replace methods/classes/modules with mock objects
e Clean up automatically at the end of a test

pycon 2016 @bobcatwilson

Patching with pytest .

e pytest-mock

o pip install pytest-mock
o Wrapper around the mock library the works well with pytest

import time

def time_message():
return "Time is {}".format(time.time())

test_time_message(mocker):

mocked_time = mocker.patch.object(time, 'time', autospec=True)
mocked_time.return_value = 7

assert time_message() == "Time is 7"

g pycon 2016 @bobcatwilson

N—
Mock and Patch - autospec .

K

e Make sure that the expected interface is being
o Raises if methods or attributes are used that don't exist
on the mocked object
e Always use autospec!

mocked_time = mocker.patch.object(time, 'time', autospec=True)

@mtomwing pycon 2016 son

Tutorial: Control time with mock

e https://github.com/keeppythonweird/catinabox
e Follow along with steps/6-mock.md

pycon 2016 @bobcatwilson

https://github.com/keeppythonweird/catinabox
https://github.com/keeppythonweird/catinabox

Parameterization - condensing tests

e cat_years_to_hooman_years
e What if we wanted to test for more bad input?
o So many more tests to write!

pytest.raises(safecatmath.InvalidAge):

safecatmath.cat_years_to_hooman_years(age)

g pycon 2016

@bobcatwilson

Parameterization of fixtures

e Fixtures can be parametrized too!
e py.test will automatically run every permutation of tests and fixtures

(params=|

Ib(request) :

DatabaseConnector (request.param)

(db) :

db.select('foo').from_(

pycon 2016 @bobcatwilson

Tutorial: Testing with parameterization

e https://qgithub.com/keeppythonweird/catinabox
e Follow along with steps/7-params.md

pycon 2016 @bobcatwilson

https://github.com/keeppythonweird/catinabox
https://github.com/keeppythonweird/catinabox

Unit testability and well factored code

e Lots of code is hard to unit test
e Usually not well factored
e Refactoring for unit testability = higher quality code

@mtomwing pycon 2016

Example: Poorly factored code

catinabox/examples/complected/cats.py

def setup_cats(num_cats):
cat_names = ["Fluffles", "Enzo", "Lisa", "Berto", "Jillian", "Amy",
"Bella", "Moe", "Tibby"]

foods = ["vinegar", "vegemite", "vanilla", "acorn squash",
"Canadian bacon", "alligator'", "cayenne pepper", "adobo",
"almond butter",
“earlic]

cats = []
for _ range (num_cats):
new_cat = {
"name'": random.choice(cat_names),
"last_ate": None

}

cats.append(new_cat)

for cat cats:
cat["last_ate"] = random.choice(foods)

return cats

pycon 2016 @bobcatwilson

Example: Test for poorly factored code

catinabox/examples/test_complected.py

def test__setup_cats__many_cats(mocker):

Hard to write random_choice = mocker.patch('random.choice')
Hard to read random_choice.side_effect = [

] . # Mock the cat names
Hard to maintain 2zle", "Dazzle", "Razzle",

. # Mock the foods the cats will be fed
Adds little : i

"cheese", '"cucumber", "papaya"

Copy pasta 1

result_cats = cats.setup_cats(3)

/\ ,7 assert result_cats[0] == {"name": "Frazzle",
"last_ate": "cheese"}

\X/ assert result_cats[1l] == {"name": "Dazzle",

"last_ate": "cucumber"}

assert result_cats[2] == {"name": "Razzle",
"last_ate'": '"papaya"}

g pycon 2016 @bobcatwilson

Well factored code

Highly cohesive

Loosely coupled

Does one thing

Isolate glue code (avoid complecting)*

* Rich Hickey: https://www.infoq.com/presentations/Simple-Made-Easy

@mtomwing pycon 2016 son

Example: Refactor the code for testability

catinabox/examples/uncomplected/cats.py

def get_cat_name():
cat_names = ["Fluffles", "Enzo", "Lisa", "Berto", "Jillian", "Amy",
"Bella", "Moe", "Tibby"]
return random.choice(cat_names)

get_food():
return random.choice(

["vinegar", "vegemite", "vanilla", "acorn squash",
"Canadian bacon", "alligator", '"cayenne pepper", "adobo",
"almond butter",

"garlic"])

setup_cats(num_cats):
cats = [Cat(name=get_cat_name()) for _ range (num_cats)]

for cat cats:
cat.feed(get_food())

return cats

@mtomwing pycon 2016

Example: Refactor the code for testability

catinabox/examples/test_uncomplected.py

def test__get_cat_name(mocker):
mocker.patch('random.choice', return_value="Snookums")
cat_name = cats.get_cat_name()
assert cat_name == "Snookums"

test__get_food(mocker):
mocker.patch('random.choice', return_value="carrot")
food = cats.get_food()

assert food == "carrot"

test__setup_cats__many_cats(mocker):
mocker.patch.object(cats, "get_cat_name", side_effect=["Jess", "Larry",
"Sue"])
mocker.patch.object(cats, "get food", side_effect=["berries", "milk",
"soda'"])
result_cats = cats.setup_cats(3)
assert result cats ==
cats.Cat("Jess", "berries"),
cats.Cat("Larry", "milk"),
cats.Cat("Sue", "soda")

@mtomwing pycon 2016

Tutorial: Refactoring for unit testability

e https://qgithub.com/keeppythonweird/catinabox
e Follow along with steps/8-refactor.md

pycon 2016 @bobcatwilson

https://github.com/keeppythonweird/catinabox
https://github.com/keeppythonweird/catinabox

Refactor for testability: Group code review

As a group review solution: refactored catgenerator and its tests

e |sthe code better or worse?
o Which parts are better?

o Which parts are worse? Cf/‘
e |[sthe code well tested? S

e How readable is the test?

N A
S

Ing pycon 2016 @bobcatwilson

https://github.com/keeppythonweird/catinabox/blob/solutions/catinabox/catgenerator.py
https://github.com/keeppythonweird/catinabox/blob/solutions/tests/test_catgenerator.py

Summary

e MOAR TRUST!
e MOAR CONFIDENCE!

AN

@mtomwing

N

pycon 2016

QUESTIONS

@mtomwing

N7

Al

pycon 2016

