
pycon 2016@mtomwing @bobcatwilson

Prerequisites

1. A Github account with an SSH key

https://help.github.com/articles/generating-ssh-keys/

2. If you want to develop on your machine:
3. pip and virtualenv
4. git
5. (Optional) Fork and clone our repo!

https://github.com/keeppythonweird/catinabox

https://help.github.com/articles/generating-ssh-keys/
https://help.github.com/articles/generating-ssh-keys/
https://github.com/keeppythonweird/catinabox
https://github.com/keeppythonweird/catinabox


pycon 2016@mtomwing @bobcatwilson

Intro to Unit Testing in 
Python with PyTest

Michael Tom-Wing @mtomwing
Christie Wilson @bobcatwilson



keeppythonweird@mtomwing @bobcatwilson

● Software Engineers @ Demonware
● Video Game Industry
● Owned by Activision
● Online services for games

NOW ON TO TESTING!

Obligatory Plug



pycon 2016@mtomwing @bobcatwilson

Welcome to our tutorial!!!!
Let’s find out a bit about why we’re all here

What’s your role?

http://www.strawpoll.me/10337223

Have you written a test before?

http://www.strawpoll.me/10337208

How much Python experience do you have?

http://www.strawpoll.me/10337237

http://www.strawpoll.me/10337223
http://www.strawpoll.me/10337223
http://www.strawpoll.me/10337208
http://www.strawpoll.me/10337208
http://www.strawpoll.me/10337237
http://www.strawpoll.me/10337237


pycon 2016@mtomwing @bobcatwilson

Schedule

● What is a test?
● Initial environment setup
● What are unit tests?
● Write some tests.
● What is test automation?
● Run your tests through our automation.
● What are some advanced testing techniques?
● Write some tests using those techniques.
● Q & A



pycon 2016@mtomwing @bobcatwilson

Learning Outcomes

● What tests are and why they are important
● What unit tests are and why you should write them
● How to approach writing unit tests
● Why you need test automation and some options
● Some ways to measure code / test quality
● Mocking, fixtures, and parametrization - oh my!
● Refactoring for unit testability
● Hopefully none of our bad habits :)



pycon 2016@mtomwing @bobcatwilson

What is a test?

● Specifies how your software is intended to work
● Can be run against your software to verify it



pycon 2016@mtomwing @bobcatwilson

Why test?

● Increase:
○ Trust
○ Confidence

● You will never be 100% confident!
● But you can be 60% confident.



pycon 2016@mtomwing @bobcatwilson

Types of tests

● Specifying and running tests for everything is:
○ Hard to maintain
○ Slow
○ Hard to write



pycon 2016@mtomwing @bobcatwilson

Types of tests

● Unit tests
○ Test ‘isolated units’

■ e.g. a method or function
○ Super high coverage
○ Most of the tests

● Integration tests
○ Combine units and test them together
○ Fill in the cracks between the tests

● System tests
○ Test with everything plugged together and 

configured as expected
○ From the end user’s perspective

● Acceptance tests
○ Test the customer’s use cases



pycon 2016@mtomwing @bobcatwilson

Types of tests



pycon 2016@mtomwing @bobcatwilson

Tutorial: Setup and run existing tests

● https://github.com/keeppythonweird/catinabox/
● Follow along with /steps/1-run_tests.md

○ Setup a virtualenv
○ Run the existing tests

https://github.com/keeppythonweird/catinabox/
https://github.com/keeppythonweird/catinabox/


pycon 2016@mtomwing @bobcatwilson

Optional - Use PythonAnywhere

● Sign up for an account (the beginner tier is free!)
● Start a bash session
● Create an SSH key and upload it to Github

○ $ ssh-keygen
○ < hit enter a bunch of times >
○ $ cat .ssh/id_rsa.pub
○ < copy the output to Github>

● Continue with the originally instructions at the “clone our repo” step



pycon 2016@mtomwing @bobcatwilson

Coverage

Statement coverage == “Was this line executed?”

Decision coverage == “Was this code path executed?”

Condition coverage == “Was every part of the decision executed?”

statement

decision

condition



pycon 2016@mtomwing @bobcatwilson

Unit Tests

● People often love or hate unit tests.
● But they are neutral, like brushing your teeth



pycon 2016@mtomwing @bobcatwilson

What are unit tests good for?

● Finding bugs DURING development
● A design tool
● Writing maintainable code
● Documenting a developer’s intentions
● Running quickly



pycon 2016@mtomwing @bobcatwilson

What are unit tests not good for?

● Finding bugs
● Indicating that your application is functioning correctly
● Testing glue code
● Testing every possible permutation

Tests Pass!



pycon 2016@mtomwing @bobcatwilson

Unit tests ARE NOT for preventing bugs



pycon 2016@mtomwing @bobcatwilson

Unit tests ARE for
writing clean maintainable code with confidence



pycon 2016@mtomwing @bobcatwilson

Generating test cases

● Think about possible input
● Categorize the input into special cases
● One test per special case



pycon 2016@mtomwing @bobcatwilson

How would we test this? - #1



pycon 2016@mtomwing @bobcatwilson

How would we test this?

● Input which IS a palindrome
● Input which is NOT a palindrome



pycon 2016@mtomwing @bobcatwilson

Trusting sources of input

● What if the wrong type of data is passed in?
● What if the sequence is extremely large?
● Depends:

○ Where the input is coming from
○ Where you implement validation



pycon 2016@mtomwing @bobcatwilson

How would we test this? - #2

2004



pycon 2016@mtomwing @bobcatwilson

How would we test this? - #2

is_valid_number(3) == True

is_valid_number(1) == False

is_valid_number(8) == False

is_valid_number(6) == False

is_leap_year(1757) == False

is_leap_year(2004) == True

is_leap_year(1900) == False

is_leap_year(2000) == True



pycon 2016@mtomwing @bobcatwilson

Python Unit Testing

unittest module
● Comes with the standard library
● Typically will do basically everything you need
● self.assertEqual(result, “cats”)

pytest module
● $ pip install pytest
● Provides everything that unittest does but with more batteries included!
● Less boilerplate thanks to magical fixtures.
● Assertions are more natural and do not require custom invocation.
● assert result == “cats”

We’ll be using pytest in this tutorial.



pycon 2016@mtomwing @bobcatwilson

pytest - how to

1. $ pip install pytest
2. Create a module to hold your test (e.g. test_cool_stuff.py).
3. Write the test.

4. Run the test.



pycon 2016@mtomwing @bobcatwilson

pytest - how to continued

pytest will treat any function whose name starts with test_ a test. 
Same goes for test modules.

We can use plain old Python assert to test that things are as we expected them to 
be.



pycon 2016@mtomwing @bobcatwilson

Unit Test Structure

1. Define your inputs and any preconditions.
2. Invoke the thing.
3. Verify that it did what you expected.

TL;DR a test is an easy way for you to quantify what it means for your thing to 
“work”.



pycon 2016@mtomwing @bobcatwilson

PEP8

● It’s a coding standard
● Prescribes things like:

○ < 80 character lines
○ 2 new lines between functions in a module
○ 1 new line between methods in a class
○ Visual indentation rules
○ … and more!

● PEP8 isn’t the only standard out there! (see Google’s Python Style Guide)
● Main thing is to be consistent with the codebase
● Our tests will fail if py.test finds any PEP8 violations :)
● https://www.python.org/dev/peps/pep-0008/

https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/


pycon 2016@mtomwing @bobcatwilson

Tutorial: Write your first test

● https://github.com/keeppythonweird/catinabox
● Follow along with steps/2-simple_function.md

○ Finish writing the tests in test_catmath.py

https://github.com/keeppythonweird/catinabox
https://github.com/keeppythonweird/catinabox


pycon 2016@mtomwing @bobcatwilson

Test Automation

● You should run your 
tests regularly!



pycon 2016@mtomwing @bobcatwilson

Test Automation - System tests

● Reduce developer burden
○ Slower
○ More difficult to set up



pycon 2016@mtomwing @bobcatwilson

Travis CI

● CI = Continuous Integration
● Third party service that will “build” your Github projects

○ “build” = “run the tests” in our case

● Free for open source projects
● We won’t be covering setting up Travis, but rest assured it is very 

simple!
● Other CI services are available

(e.g. Atlassian’s Bamboo)
● https://travis-ci.org/keeppythonweird/catinabox

https://travis-ci.org/keeppythonweird/catinabox
https://travis-ci.org/keeppythonweird/catinabox


pycon 2016@mtomwing @bobcatwilson

Coveralls

● Third-party service for measuring statement coverage of your Github project
● Free for open source projects
● Track changes in coverage over time
● https://coveralls.io/github/keeppythonweird/catinabox

https://coveralls.io/github/keeppythonweird/catinabox
https://coveralls.io/github/keeppythonweird/catinabox


pycon 2016@mtomwing @bobcatwilson

Other Testable Aspects

● Sometimes it’s also worth adding other checks to your testing pipeline.
● Static Analysis: Done entirely offline - without running your code
● Cyclomatic Complexity

○ A measure of how complex a function is
○ Checks that functions “aren’t too complex”
○ $ pip install pytest-mccabe

● PEP8
○ Checks for PEP8 compliance
○ $ pip install pytest-pep8

● Pyflakes
○ Checks for syntax errors
○ $ pip install pytest-flakes

● You can have these run before your tests
in order to fail fast!



pycon 2016@mtomwing @bobcatwilson

Tutorial: Create a pull request

● https://github.com/keeppythonweird/catinabox
● Follow along with steps/3-pull.md

○ Commit your new tests
○ Create a pull request from your fork

BONUS!

● If you finish early, review the other pull requests
○ Be respectful and positive
○ This presentation has great tips for effective code reviews:

■ http://confreaks.tv/videos/railsconf2015-implementing-a-strong-code-review-culture

https://github.com/keeppythonweird/catinabox
https://github.com/keeppythonweird/catinabox
http://confreaks.tv/videos/railsconf2015-implementing-a-strong-code-review-culture
http://confreaks.tv/videos/railsconf2015-implementing-a-strong-code-review-culture


pycon 2016@mtomwing @bobcatwilson

Trusting sources of input

● What if we didn’t trust the input?
● What other test cases might we have for 

cat_years_to_hooman_years?



pycon 2016@mtomwing @bobcatwilson

Generating test cases

● < 0
● 0
● Fraction of a year
● Most ages
● > 1000
● Wrong data type
● NaN



pycon 2016@mtomwing @bobcatwilson

pytest - Testing for exceptions

● pytest.raises



pycon 2016@mtomwing @bobcatwilson

Advanced cat hooman

● catinabox/safecatmath.py
● Now checks that age_in_cat_years is an int or float.
● Also makes sure the cat is not too young or too old.



pycon 2016@mtomwing @bobcatwilson

Tutorial: Testing incorrect input

● https://github.com/keeppythonweird/catinabox
● Follow along with steps/4-input.md

https://github.com/keeppythonweird/catinabox
https://github.com/keeppythonweird/catinabox


pycon 2016@mtomwing @bobcatwilson

pytest - fixtures

Fixtures are a way to define reusable components that are required by your tests.
Pytest will automagically hook up your fixtures to your tests (or other fixtures!) 
that require them.

See https://pytest.org/latest/builtin.html for more information on the built-in 
fixtures provided by pytest.

https://pytest.org/latest/builtin.html


pycon 2016@mtomwing @bobcatwilson

pytest - fixtures continued

By default, fixtures are recreated for every test that requires them.

It is possible to control the lifetime of a fixture (e.g. create it once for all the tests), 
but that is out of scope for today! See https://pytest.org/latest/fixture.html.

https://pytest.org/latest/fixture.html


pycon 2016@mtomwing @bobcatwilson

Tutorial: Testing classes with fixtures

● https://github.com/keeppythonweird/catinabox
● Follow along with steps/5-classes.md

https://github.com/keeppythonweird/catinabox
https://github.com/keeppythonweird/catinabox


pycon 2016@mtomwing @bobcatwilson

Unit testing and state of the outside world

● What if you want to test functionality that:
○ Uses the current time/sleeps

○ Depends on an external service (e.g. an HTTP server or DB)

○ Uses random 

● Super easy in Python!!!



pycon 2016@mtomwing @bobcatwilson

Mocking

● Create “mock” objects that mimic the external objects/functions
● You can control their behaviour completely!

○ Return whatever time you want
○ Pretend to sleep
○ Return fake DB or HTTP results
○ Return deterministic results instead of random

● Verify arguments used
● Verify that everything is plugged together correctly

○ Test the true behaviour later with system tests



pycon 2016@mtomwing @bobcatwilson

Mocking

● mock
○ pip install mock

● Included in the Python 3 standard lib



pycon 2016@mtomwing @bobcatwilson

Mocking

● mock



pycon 2016@mtomwing @bobcatwilson

Patching

● Replace methods/classes/modules with mock objects
● Clean up automatically at the end of a test



pycon 2016@mtomwing @bobcatwilson

Patching with pytest

● pytest-mock
○ pip install pytest-mock
○ Wrapper around the mock library the works well with pytest



pycon 2016@mtomwing @bobcatwilson

Mock and Patch - autospec

● Make sure that the expected interface is being
○ Raises if methods or attributes are used that don’t exist 

on the mocked object
● Always use autospec!



pycon 2016@mtomwing @bobcatwilson

Tutorial: Control time with mock

● https://github.com/keeppythonweird/catinabox
● Follow along with steps/6-mock.md

https://github.com/keeppythonweird/catinabox
https://github.com/keeppythonweird/catinabox


pycon 2016@mtomwing @bobcatwilson

Parameterization - condensing tests

● cat_years_to_hooman_years
● What if we wanted to test for more bad input?

○ So many more tests to write!



pycon 2016@mtomwing @bobcatwilson

Parameterization of fixtures

● Fixtures can be parametrized too!
● py.test will automatically run every permutation of tests and fixtures



pycon 2016@mtomwing @bobcatwilson

Tutorial: Testing with parameterization

● https://github.com/keeppythonweird/catinabox
● Follow along with steps/7-params.md

https://github.com/keeppythonweird/catinabox
https://github.com/keeppythonweird/catinabox


pycon 2016@mtomwing @bobcatwilson

Unit testability and well factored code

● Lots of code is hard to unit test
● Usually not well factored
● Refactoring for unit testability = higher quality code



pycon 2016@mtomwing @bobcatwilson

Example: Poorly factored code

catinabox/examples/complected/cats.py



pycon 2016@mtomwing @bobcatwilson

catinabox/examples/test_complected.py

● Hard to write
● Hard to read
● Hard to maintain
● Adds little
● Copy pasta

Example: Test for poorly factored code



pycon 2016@mtomwing @bobcatwilson

Well factored code

● Highly cohesive
● Loosely coupled
● Does one thing
● Isolate glue code (avoid complecting)*

* Rich Hickey: https://www.infoq.com/presentations/Simple-Made-Easy



pycon 2016@mtomwing @bobcatwilson

Example: Refactor the code for testability
catinabox/examples/uncomplected/cats.py



pycon 2016@mtomwing @bobcatwilson

Example: Refactor the code for testability
catinabox/examples/test_uncomplected.py



pycon 2016@mtomwing @bobcatwilson

Tutorial: Refactoring for unit testability

● https://github.com/keeppythonweird/catinabox
● Follow along with steps/8-refactor.md

https://github.com/keeppythonweird/catinabox
https://github.com/keeppythonweird/catinabox


pycon 2016@mtomwing @bobcatwilson

Refactor for testability: Group code review

As a group review solution: refactored catgenerator and its tests

● Is the code better or worse?
○ Which parts are better?
○ Which parts are worse?

● Is the code well tested?
● How readable is the test?

https://github.com/keeppythonweird/catinabox/blob/solutions/catinabox/catgenerator.py
https://github.com/keeppythonweird/catinabox/blob/solutions/tests/test_catgenerator.py


pycon 2016@mtomwing @bobcatwilson

Summary

● MOAR TRUST!
● MOAR CONFIDENCE!



pycon 2016@mtomwing @bobcatwilson

QUESTIONS


