
PYTHONS IN A
CONTAINER

LESSONS LEARNED DOCKERIZING PYTHON MICROSERVICES...
...THE HARD WAY

Presented by / Dorian Puła @dorianpula

http://dorianpula.ca/
http://twitter.com/dorianpula

INTRODUCTION

WHO AM I?
So�ware Development Engineer @
 Develop eCommerce platform for Loyalty Programs
 (Buy, Gi� + Transfer points)
 Flask REST APIs + Apps
 Dockerized microservices

Open Source
 - Yet Another CMS
 Contributed to Fabric, Ansible & core Python
 Ansible roles for NGINX, UWSGI, NodeJS and Supervisor

Points

Rookeries

https://points.com/
http://rookeries.org/

WHAT IS THIS TALK ABOUT?
Lessons learned using Docker for Flask REST API and apps.
Incorporating various tools that Docker and docker-compose
provide for better DevOps workflow.
The usefulness of unlearning some accepted patterns in
Python development, when working with Docker.

WHAT IS THIS TALK NOT ABOUT?
An introduction to basic Docker or WSGI apps.
Docker Machine (cool as it is).
Advanced Docker wizardery. See Dockercon next week for that.
An exposé on why you must or must not use Docker.

MICROSERVICES + DOCKER

EXAMPLE APP + API - POINTS FOR
PYTHONISTAS

Imagine having to build an app for a new hypothetical loyalty
program for sprint contributers at PyCon.
Earn points per commit or issue resolved. Redeem points for
essential sprint goods. (e.g. coffee, poptarts or dogecoin.)
Has the following components:

REST API
Frontend App
Redemption of Points
User + Project Registration/Linking
Database

WHY A MICROSERVICES
ARCHITECTURE?

Imagine implementing said example using a microservices
architecture, with multiple services built by multiple teams.
Benefits:
 Smaller less complex codebases.
 Enable independence between codebases & teams.
 More flexible scaling schemes (tech & organizational).

Drawbacks:
 Distributed codebases harder to infer, and may contain
implicit inter-service dependencies.
 More complex orchestration, monitoring & provisioning.

EXAMPLE ARCHITECTURE

Points
App + API

Redeem
Service

User + Project
Registry Service

DatabaseDatabaseDogecoin DatabaseBitbucket

WHY USE DOCKER?
 Containers vs. Virtual machines

Containers lighter in memory and processing than VMs.
Isolated user-space instances vs. machine emulation.

Docker uses cached/immutable layered file systems.

 Tooling for Managing Containers
Quick spin up of container/environments.
Easily create, share and publish images to registries.
Unified workflow that replaces other tools:

e.g. chroot jails, LXC, Vagrant, etc.

DEVELOPMENT AND TESTING

DOCKER COMPOSE
Specify with docker-compose.yaml...

points_app:
 build: .
 ports:
 "5000:5000"
 environment:
 API_KEY=MY_SUPER_SECRET_KEY
 hostname: app
 links:
 "couchdb:couch"
couchdb:
 image: couchdb
 ports:
 "5984:5984"
 volumes:
 data:/usr/local/var/lib/couchdb
other_services: ...

...and start up with:
dockercompose up

DOCKER WORKFLOW
Docker + Compose replaces a Vagrant + VM workflow
vagrant up + vagrant ssh + run $app_command docker run
$app_command
vagrant halt docker stop
vagrant status docker ps
vagrant provision docker build
vagrant destroy docker stop + docker rm
vagrant box list, remove docker images, docker rmi

BUILDING GOOD DOCKER IMAGES
 Sample Dockerfile

FROM ubuntu:16.04
RUN aptget update && aptget install y python pythondev gcc \
 pythonpip pythonsetuptools
ADD wsgi_app /app
WORKDIR /app
RUN pip install r requirements.txt && pip install uwsgi
CMD uwsgi http :5000 master processes 4 wsgifile app_wsgi.py
CMD python app_wsgi.py
EXPOSE 5000

Each step in a Dockerfile can create a new layer in filesystem.
Minimize steps number of separate RUN steps.

Try to make layers cacheable:
Cached layer reused if no checksum change in source.

Use base images for heavily repeated steps.
See ONBUILD command for making dynamic base images.

Expose ports and volumes to document image.

PYTHON AND WSGI APPS
 Web Servers

Don't run a web server on your container. Use an external
proxy or container instead.
Just run WSGI apps using a WSGI app server:

uWSGI
Gunicorn

 Virtualenvs
Don't use virtualenvs inside Docker containers!
Install directly into the system Python site packages.

DEBUGGING CONTAINERS
Want a minimal image, so no SSH daemon...
...so how do we debug a running container?

 Run Bash (or other command) on a Running Service

 Inspecting a Service's Logs (Standard Out & Error)

 Inspecting a Running Container's Setup

dockercompose exec $SERVICE_NAME /bin/bash

dockercompose logs $SERVICE_NAME

docker inspect $CONTAINER_ID
 > ...

docker inspect format '{{json .Config.ExposedPorts }}' \
 $CONTAINER_ID
 > {"5000/tcp": {}}

PERSISTANCE, CONFIGS & PROCESSES
 Volume Maps

Changes to container lost a�er container destroyed.
Volume maps to external host folder for persistence.
Another pattern is using separate Docker data containers.

 Configuration
Prefer using environment variables for configuration.
Volume mapped configs maybe a warning sign of a overly
complex setup or a config in need of refactoring.

 Managing Processes
Use supervisord or runit to control multiple processes.
Consider refactoring containers to not need that.

TESTING + TOOLING
 Testing

Docker adds consistency in your CI environments!
Simple setup for a Docker host.
Control over what is in container = Repeatable workflow
and simpler test environment.
Cloud-based CI options with Docker support out there.

 Tooling
Docker tool defaults, options, and internal API can radically
from version to version.
Don't build your own tooling! If you can avoid it...
docker-py: a Python client library for working with Docker*

DEPLOYMENT AND SCALING

EXAMPLE ARCHITECTURE

Points
App + API

Redeem
Service

User + Project
Registry Service

DatabaseDatabaseDogecoin DatabaseBitbucket

EXAMPLE PROD ENVIRONMENT

Datacenter 2Datacenter 2

LoadBalancer

User + Project
Registry Service

Redeem
Service

Points
App + API

Datacenter 1Datacenter 1
Points

App + API
Points

App + API

Redeem
Service

User + Project
Registry Service

DatabaseDatabase Database

LoadBalancer LoadBalancer

User + Project
Registry Service

Redeem
Service

Points
App + API
Points

App + API
Points

App + API

Redeem
Service

User + Project
Registry Service

DatabaseDatabase Database

LoadBalancer LoadBalancer

SETTING UP A CLOUD
Looks like you're trying to build a cloud of microservices...
 Load Balancing + Network Topology:

 e.g. HAProxy & Nginx, etc.
 Provisioning:

 Automated, repeatable setup for non-Docker systems.
 e.g. Ansible, Puppet & Salt.

 Monitoring:
 Look at app health, app behaviour & system resources.
 e.g. Nagios, Pingdom & New Relic.

 Logging:
 Aggregate various logs and correlate events.
 e.g. Splunk.

CLOUD INFRASTRUCTURE
 Managing cloud infrastructure is hard!
 Need tooling and automation for all that stuff.
 Don't build your own tool unless you want to support it to
end of time. (Unless you're a cloud tech vendor.)
 Consider using one of these instead:

Docker
Swarm

Kubernetes OpenStack
Magnum

CoreOS
Fleet

https://www.docker.com/products/docker-swarm
http://kubernetes.io/
https://wiki.openstack.org/wiki/Magnum
https://coreos.com/using-coreos/clustering/

LESSONS LEARNED

LESSONS LEARNED
Microservices and Docker can improve building and deploying
complex systems. But neither is a cure-all.
Good development & deployment processes matter. Docker
has a decent workflow to help shape those processes.
Expect lots of additional infrastructure around microservices.
Avoid building your own tooling.
Use Docker containers to do effective isolation.
Good app design goes a long way.

RESOURCES
Jared Kerim's Django Docker template:

12 Factor apps:

Rookeries - Dockerized Workflow Example:

https://github.com/jaredkerim/django-docker-compose

http://12factor.net/

https://bitbucket.org/dorianpula/rookeries/
(docker_compose_workflow branch)

https://github.com/jaredkerim/django-docker-compose
http://12factor.net/
https://bitbucket.org/dorianpula/rookeries/branch/docker_compose_workflow

THANK YOU!
 Twitter - @dorianpula
 WWW - http://dorianpula.ca/

ANY QUESTIONS?
GO FORTH AND BUILD AWESOME STUFF!!!

http://dorianpula.ca/

