
Postgres Present
and Future

@craigkerstiens

@craigkerstiens
Head of Citus Cloud

Curate Postgres Weekly

Launched Python support on Heroku
4.5 years ago, ran product for a
number of areas at Heroku, primarily
Heroku Postgres and our core
languages

Pronunciation
It might help to explain that the pronunciation is "post-gres" or
"post-gres-cue-ell", not "post-gray-something".

I heard people making this same mistake in presentations at this
past weekend's Postgres Anniversary Conference :-(Arguably,
the 1996 decision to call it PostgreSQL instead of reverting to
plain Postgres was the single worst mistake this project ever
made.
It seems far too late to change now, though.

regards, tom lane

Postgres – TLDR;
Datatypes

Conditional indexes

Transactional DDL

Foreign Data Wrappers

Extensions

Common Table Expressions

Geospatial capabilities

Full text search

Fast Column Addition

Listen/Notify

Table Inheritance

Per Transaction Sync. Replication

Window Functions

JSONB

Momentum

“Postgres - it’s the
emacs of databases”

Rough outline
Postgres 9.5 – released 3 months ago
Postgres 9.6 – feature frozen 1 month ago
Extensions – a small tour of a few

Postgres – 9.5
Insert… on conflict do…
BRIN Indexes
Foreign schema
Grouping sets
New JSONB Operators

Insert… on conflict do…

Insert… on conflict do…

Upsert
Try to insert a record
If some key identifier is already there, simply update the
record

Each user can have only one, if
you try to save mine and it
already exists, just update the
data.

Before upsert
WITH upsert AS (

 UPDATE pinned_tweet
 SET tally=tally+1
 WHERE user_id=1
 AND tweet_id=2 RETURNING *

)

INSERT INTO pinned_tweet (user_id, tweet_id)

SELECT 1, 3 WHERE NOT EXISTS (SELECT * FROM upsert)

Race conditions

Now
Transactionally safe upsert:

INSERT INTO pinned_tweets (user_id, tweet_id)
VALUES (1, 3)
ON CONFLICT
DO UPDATE SET tweet_id = 5;

Now
Transactionally safe upsert:

INSERT INTO pinned_tweets (user_id, tweet_id)
VALUES (1, 3)
ON CONFLICT
DO UPDATE SET tweet_id = 5;

Indexes
B-Tree
GIN
GiST
KNN
SP-GiST
BRIN

Indexes - which to use
B-Tree
GIN
GiST
KNN
SP-GiST
BRIN

Indexes - which to use
B-Tree
Default
What you usually want

Indexes - which to use
Gin
Use with multiple values in a single column
hstore/array/JSONB

Indexes - which to use
GiST
Values between columns overlap
Full text search, shapes (GIS)

Indexes
B-Tree
GIN
GiST
KNN
SP-GiST
BRIN

Indexes
B-Tree
GIN
GiST
KNN
SP-GiST
BRIN

Indexes
B-Tree
GIN
GiST
KNN
SP-GiST
BRIN

Indexes
B-Tree
GIN
GiST
KNN
SP-GiST
BRIN

But first, foreign data wrappers
Connect from inside Postgres to some other data
source and query directly in Postgres

Import Foreign Schema

Import Foreign Schema
CREATE EXTENSION mongo_fdw;

Import Foreign Schema
CREATE EXTENSION mongo_fdw;

CREATE SERVER foo…

Import Foreign Schema
CREATE EXTENSION mongo_fdw;

CREATE SERVER foo…

CREATE FOREIGN TABLE my_mongo_table (

 id int,

 title varchar(255),

 description text

)

Import Foreign Schema
CREATE SERVER foo…

IMPORT FOREIGN SCHEMA mongo_schema

FROM SERVER foo

INTO mongo_locally;

Grouping Sets
Handy for analytics that otherwise took a lot of case
statements

Essentially new types of grouping that lets you easily
cube data.

Grouping Sets
SELECT department, role, age, count(*)

FROM employees

GROUP BY your_grouping_type_here;

Options include: Grouping Sets, Cube, Rollup

Grouping Sets
 GROUPING SETS (department, role, age, ());

 department | role | age | count

 ------------+-----------------+-----------+-------

 Finance | | | 3

 IT | | | 2

 Sales | | | 2

 | | | 7

 | | 30 | 3

 | | 40 | 4

 | Accountant | | 1

 | Manager | | 3

 | Project Manager | | 3

 (9 rows)

Cube
CUBE (department, role, age);

 department | role | age | count

 ------------+-----------------+-----------+-------

 Finance | Accountant | 40 | 1

 Finance | Accountant | | 1

 Finance | Manager | 40 | 1

 Finance | Manager | | 1

 Finance | Project Manager | 30 | 1

 Finance | Project Manager | | 1

 Finance | | | 3

 IT | Manager | 40 | 1

 IT | Manager | | 1

…

JSONB
Came in Postgres 9.4

Binary JSON, more or less what mongo does

Can index it–indexes an entire document

JSONB - Functions
Concatenation
Remove specific keys
Pretty print

SELECT ‘{
 "name": "Craig",
 "city": “Albany”
 }'::jsonb ||
 ‘{
 "talk": “Postgres”
 }'::jsonb;

 ?column?

 {“city”: “Albany”, "name":
"Craig", "talk": "Postgres"}
 (1 row)

JSONB - Functions
Concatenation
Remove specific keys
Pretty print

SELECT ‘{
 "name": "Craig",
 "city": “Albany”
 }’::jsonb
 - ‘city’

 ?column?

 {"name": "Craig"}
 (1 row)

JSONB - Functions
Concatenation
Remove specific keys
Pretty print

SELECT jsonb_pretty(’{
 "name": "Craig",
 "city": “Albany”,
 "talk": "Postgres"
 }’::jsonb)

 ?column?

 { +
 "city": “Albany”, +
 "name": "Craig", +
 "talk": "Postgres"+
 }
 (1 row)

Postgres – 9.5
Upsert
BRIN Indexes
Foreign schema
Grouping sets
New JSONB Operators

Postgres – 9.6
Parallelism
Parallel sequential scans
Parallel joins

No more full-table vacuums
Bloom filter
Postgres FDW improvements

Parallel scans
Previously on a
sequential scan 1
worker process
scans all rows

Parallel scans
Now:
set max_parallel_degree = 4;

w1 w2 w3 w4

Rough benchmarking shows an example of 743 ms to 213 ms -

per http://rhaas.blogspot.co.nz/2015/11/parallel-sequential-scan-is-
committed.html

http://rhaas.blogspot.co.nz/2015/11/parallel-sequential-scan-is-committed.html

No more full-table vacuums
Behind the scenes every 2 billion write transactions
Postgres has to check for frozen tuples

This is a problem for large databases, think terabytes
without always frequent updates

Bloom filter
Space efficient probabilistic data structure

Example schema:
columns a, b, c, d, e

You want to search for WHERE a = 23 and b = 785

Indexing
CREATE INDEX idx_ab ON table (a, b)

This misses:
WHERE a = foo and c = bar

Bloom filter
CREATE extension bloom;

CREATE INDEX bloomidx ON table using
bloom (a, b, c, d, e);

Might return false positives, but Postgres will then filter
those.

Postgres – 9.6
Parallel
Parallel sequential scans
Parallel joins

No more full-table vacuums
Bloom filter
Postgres FDW improvements

Extensions
Citus
Hyperloglog

Citus
Postgres works best when data is in memory
Most commonly it’s one table you need to scale out

You might need to shard if you have a table called:
events, logs, messages

Citus
Postgres extension that allows you to turn
Postgres into a distributed database.

You go from one database, to spreading
your data set across a single node

Think parallel, but across multiple
instances not just scaled up

Citus
CREATE EXTENSION citus;

CREATE TABLE tweets (id uuid,
 user_id uuid,
 tweet varchar(140));

SELECT master_create_distributed_table(
 'tweets',
 'id',
 'hash');

SELECT master_create_worker_shards('tweets', 16, 1);

INSERT INTO tweets (id, user_id, tweet) VALUES (1, 2,
“Words of wisdom”)

Hyper log log

Hyperloglog
KMV - K Minimum Value
Bit observable patterns
Stochastic averaging
Harmonic averaging

Hyper log log
KMV - K minimum value
Bit observable patterns
Stochastic averaging
Harmonic averagaing

Probabilistic uniques
with small footprint

Close enough counts
with small footprint

Hyperloglog
CREATE EXTENSION hll;

CREATE TABLE daily_uniques (

 date date unique,

 users hll

);

Hyperloglog
CREATE EXTENSION hll;

CREATE TABLE daily_uniques (

 date date unique,

 users hll

);

Hyperloglog
INSERT INTO daily_uniques(date, users)

SELECT date, hll_add_agg(hll_hash_integer(user_id))

FROM users

GROUP BY 1;

Hyperloglog
SELECT EXTRACT (month from date) AS MONTH,

 hll_cardinality(hll_union_agg(users))

FROM daily_uniques

WHERE date >= ‘2016-01-01’

 AND date < ‘2016-02-01’

GROUP BY 1;

Hyperloglog
SELECT EXTRACT (month from date) AS MONTH,

 hll_cardinality(hll_union_agg(users))

FROM daily_uniques

WHERE date >= ‘2016-01-01’

 AND date < ‘2016-02-01’

GROUP BY 1;

Extensions
Citus

Hyperloglog

HypoPG

PLV8

Multicorn

pg_partman

pg_repack

range_partitioning

orafce

mysql_fdw

mongo_fdw

cstore_fdw

sqlite_fdw

oracle_fdw

ldap_fdw

postgres_fdw

Extensions
PGXN.org
Github
Postgres Weekly

http://pgxn.org

Rough recap
Postgres 9.5

released 5 months ago
Highlights include Upsert, lots of small usability improvements

Postgres 9.6
Feature frozen 1 month ago
Mostly performance improvements

Extensions
Citus - Horizontally scalable Postgres
HLL - Almost exact uniques across large datasets
Lots more - explore them at pgxn.org

http://pgxn.org

Postgres – TLDR;
Datatypes

Conditional indexes

Transactional DDL

Foreign Data Wrappers

Extensions

Common Table Expressions

Geospatial capabilities

Full text search

Fast Column Addition

Listen/Notify

Table Inheritance

Per Transaction Sync. Replication

Window Functions

JSONB

Momentum

