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< About Me >
- Astronomer by training

- Statistician by accident

- Active in Python science & open source

- Data Scientist at UW eScience Institute

- @jakevdp on Twitter & Github 





Hacker (n.)
1. A person who is trying to steal 

your grandma’s bank password.



Hacker (n.)
1. A person who is trying to steal 

your grandma’s bank password.

2. A person whose natural approach 
to problem-solving involves 
writing code.



Statistics is Hard.



Statistics is Hard.

Using programming skills,
it can be easy.



My thesis today:

If you can write a for-loop,
 you can do statistics



Statistics is fundamentally about

Asking the Right Question.



– Dr. Seuss (attr)



Warm-up



You toss a coin 30 
times and see 22 
heads. Is it a fair coin?

Warm-up:

Coin Toss



A fair coin should 
show 15 heads in 30 
tosses. This coin is 

biased.

Even a fair coin 
could show 22 heads 
in 30 tosses. It might 

be just chance.



Classic Method:

Assume the Skeptic is correct: 
test the Null Hypothesis.

What is the probability of a fair 
coin showing 22 heads simply 
by chance?



Classic Method:

Start computing probabilities . . .



Classic Method:



Classic Method:

Number of 
arrangements 
(binomial 
coefficient) Probability of 

NH heads

Probability of 
NT tails



Classic Method:



Classic Method:



Classic Method:

0.8 %



Classic Method:

0.8 %

Probability of 0.8% (i.e. p = 0.008) of 
observations given a fair coin.
    → reject fair coin hypothesis at p < 0.05



Could there be
an easier way?



Easier Method:
Just simulate it!

M = 0

for i in range(10000):

    trials = randint(2, size=30)

    if (trials.sum() >= 22):

        M += 1

p = M / 10000 # 0.008149

→ reject fair coin at p = 0.008



In general . . .

Computing the Sampling 
Distribution is Hard.



In general . . .

Computing the Sampling 
Distribution is Hard.

Simulating the Sampling 
Distribution is Easy.



Four Recipes for
Hacking Statistics:

1. Direct Simulation
2. Shuffling
3. Bootstrapping
4. Cross Validation



Now, the Star-Belly Sneetches
had bellies with stars. 

The Plain-Belly Sneetches
had none upon thars . . .

Sneeches:
Stars and
Intelligence

*inspired by John Rauser’s
Statistics Without All The Agonizing Pain



★ ❌

84 72 81 69

57 46 74 61

63 76 56 87

99 91 69 65

66 44

62 69

★ mean: 73.5
❌ mean: 66.9
difference: 6.6

Sneeches:
Stars and 
Intelligence

Test Scores



★ mean: 73.5
❌ mean: 66.9
     difference: 6.6

Is this difference of 6.6
statistically significant?



Classic 
Method

(Welch’s t-test)



Classic 
Method

(Welch’s t-test)



Classic 
Method

(Student’s t distribution)



Classic 
Method

(Student’s t distribution)

Degree of Freedom: “The number of independent 
ways by which a dynamic system can move, 
without violating any constraint imposed on it.”

-Wikipedia
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Classic 
Method

(Student’s t distribution)



Classic 
Method

( Welch–Satterthwaite 
equation)
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Classic 
Method

( Welch–Satterthwaite 
equation)

https://en.wikipedia.org/wiki/Welch%E2%80%93Satterthwaite_equation
https://en.wikipedia.org/wiki/Welch%E2%80%93Satterthwaite_equation
https://en.wikipedia.org/wiki/Welch%E2%80%93Satterthwaite_equation


Classic 
Method



Classic 
Method



Classic 
Method

1.7959



Classic 
Method



Classic 
Method



Classic 
Method



“The difference of 6.6 is not 
significant at the p=0.05 level”





The biggest problem:

We’ve entirely lost-track 
of what question we’re 

answering!



< One popular alternative . . . >

“Why don’t you just . . .”
from statsmodels.stats.weightstats import ttest_ind

t, p, dof = ttest_ind(group1, group2,

                      alternative='larger',

                      usevar='unequal')

print(p)  # 0.186



< One popular alternative . . . >

“Why don’t you just . . .”
from statsmodels.stats.weightstats import ttest_ind

t, p, dof = ttest_ind(group1, group2,

                      alternative='larger',

                      usevar='unequal')

print(p)  # 0.186

. . . But what question is 
this answering?



The deep meaning lies in the 
sampling distribution:

Stepping Back...

0.8 %

Same principle as 
the coin example:



Let’s use a sampling
method instead



The Problem:

Unlike coin flipping, we don’t 
have a generative model . . .



The Problem:

Unlike coin flipping, we don’t 
have a generative model . . .

Solution:
Shuffling



★ ❌

84 72 81 69

57 46 74 61

63 76 56 87

99 91 69 65

66 44

62 69

Idea:
Simulate the distribution 
by shuffling the labels 
repeatedly and computing 
the desired statistic.

Motivation:
if the labels really don’t 
matter, then switching 
them shouldn’t change 
the result!



★ ❌

84 72 81 69

57 46 74 61

63 76 56 87

99 91 69 65

66 44

62 69

1. Shuffle Labels
2. Rearrange
3. Compute means
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1. Shuffle Labels
2. Rearrange
3. Compute means
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61 69 74 57

65 76 56 87

99 44 46 63

66 91

62 69

1. Shuffle Labels
2. Rearrange
3. Compute means
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84 81 72 69

61 69 74 57

65 76 56 87
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1. Shuffle Labels
2. Rearrange
3. Compute means
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84 81 72 69

61 69 74 57

65 76 56 87

99 44 46 63

66 91

62 69

★ mean: 72.4
❌ mean: 67.6
difference: 4.8

1. Shuffle Labels
2. Rearrange
3. Compute means



★ ❌

84 81 72 69

61 69 74 57

65 76 56 87

99 44 46 63

66 91

62 69

1. Shuffle Labels
2. Rearrange
3. Compute means



★ ❌

84 56 72 69

61 63 74 57

65 66 81 87

62 44 46 69

76 91

99 69

★ mean: 62.6
❌ mean: 74.1
difference: -11.6

1. Shuffle Labels
2. Rearrange
3. Compute means



★ ❌

84 56 72 69

61 63 74 57

65 66 81 87

62 44 46 69

76 91

99 69

1. Shuffle Labels
2. Rearrange
3. Compute means



★ ❌

74 56 72 69

61 63 84 57

87 76 81 65

91 99 46 69

66 62

44 69

★ mean: 75.9
❌ mean: 65.3
difference: 10.6

1. Shuffle Labels
2. Rearrange
3. Compute means



★ ❌

84 56 72 69

61 63 74 57

65 66 81 87

62 44 46 69

76 91

99 69

1. Shuffle Labels
2. Rearrange
3. Compute means



★ ❌

84 81 69 69

61 69 87 74

65 76 56 57

99 44 46 63

66 91

62 72

1. Shuffle Labels
2. Rearrange
3. Compute means



1. Shuffle Labels
2. Rearrange
3. Compute means

★ ❌

74 62 72 57

61 63 84 69

87 81 76 65

91 99 46 69

66 56

44 69



1. Shuffle Labels
2. Rearrange
3. Compute means

★ ❌

84 81 72 69

61 69 74 57

65 76 56 87

99 44 46 63

66 91

62 69
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16 %

score difference
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e
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“A difference of 6.6 is not 
significant at p = 0.05.”

That day, all the Sneetches

forgot about stars

And whether they had one,

or not, upon thars.



Notes on Shuffling:

- Works when the Null Hypothesis assumes 
two groups are equivalent

- Like all methods, it will only work if your 
samples are representative – always be 
careful about selection biases!

- Needs care for non-independent trials. 
Good discussion in Simon’s Resampling: 
The New Statistics



Four Recipes for
Hacking Statistics:

1. Direct Simulation
2. Shuffling
3. Bootstrapping
4. Cross Validation



Yertle’s Turtle Tower

On the far-away island
of Sala-ma-Sond,

Yertle the Turtle
was king of the pond. . .



How High can Yertle 
stack his turtles?

- What is the mean of the number of 
turtles in Yertle’s stack?

- What is the uncertainty on this 
estimate?

48 24 32 61 51 12 32 18 19 24

21 41 29 21 25 23 42 18 23 13

Observe 20 of Yertle’s turtle towers . . .

#
 o

f 
tu

rt
le

s



Classic Method:

Sample Mean:

Standard Error of the Mean:



What assumptions go into 
these formulae?

Can we use
sampling instead?



Problem:
As before, we don’t have a 

generating model . . .



Problem:
As before, we don’t have a 

generating model . . .

Solution:
Bootstrap Resampling



Bootstrap Resampling:

48 24 51 12

21 41 25 23

32 61 19 24

29 21 23 13

32 18 42 18

Idea:
Simulate the distribution 
by drawing samples with 
replacement.

Motivation:
The data estimates its 
own distribution – we 
draw random samples 
from this distribution.
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replacement.

Motivation:
The data estimates its 
own distribution – we 
draw random samples 
from this distribution.
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Motivation:
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Simulate the distribution 
by drawing samples with 
replacement.

Motivation:
The data estimates its 
own distribution – we 
draw random samples 
from this distribution.
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Bootstrap Resampling:

48 24 51 12

21 41 25 23

32 61 19 24

29 21 23 13

32 18 42 18

Idea:
Simulate the distribution 
by drawing samples with 
replacement.

Motivation:
The data estimates its 
own distribution – we 
draw random samples 
from this distribution.
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Bootstrap Resampling:

48 24 51 12

21 41 25 23

32 61 19 24

29 21 23 13

32 18 42 18

Idea:
Simulate the distribution 
by drawing samples with 
replacement.

Motivation:
The data estimates its 
own distribution – we 
draw random samples 
from this distribution.

21 19 25 24 23 19 41 23 41 18

61 12 42
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Bootstrap Resampling:

48 24 51 12

21 41 25 23

32 61 19 24

29 21 23 13

32 18 42 18

Idea:
Simulate the distribution 
by drawing samples with 
replacement.

Motivation:
The data estimates its 
own distribution – we 
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from this distribution.

21 19 25 24 23 19 41 23 41 18

61 12 42 42 42 19 18 61



Bootstrap Resampling:

48 24 51 12

21 41 25 23

32 61 19 24

29 21 23 13

32 18 42 18

Idea:
Simulate the distribution 
by drawing samples with 
replacement.

Motivation:
The data estimates its 
own distribution – we 
draw random samples 
from this distribution.
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Bootstrap Resampling:

48 24 51 12

21 41 25 23

32 61 19 24

29 21 23 13

32 18 42 18

Idea:
Simulate the distribution 
by drawing samples with 
replacement.

Motivation:
The data estimates its 
own distribution – we 
draw random samples 
from this distribution.

21 19 25 24 23 19 41 23 41 18

61 12 42 42 42 19 18 61 29 41



Bootstrap Resampling:

48 24 51 12

21 41 25 23

32 61 19 24

29 21 23 13

32 18 42 18

Idea:
Simulate the distribution 
by drawing samples with 
replacement.

Motivation:
The data estimates its 
own distribution – we 
draw random samples 
from this distribution.

21 19 25 24 23 19 41 23 41 18

61 12 42 42 42 19 18 61 29 41
→  31.05



Repeat this
several thousand times . . .



for i in range(10000):

    sample = N[randint(20, size=20)]

    xbar[i] = mean(sample)

mean(xbar), std(xbar)

# (28.9, 2.9)

Recovers The Analytic Estimate!

Height = 29 ± 3 turtles



Bootstrap sampling
can be applied even to

more involved statistics



Bootstrap on Linear 
Regression:

What is the relationship between speed of wind 
and the height of the Yertle’s turtle tower?



Bootstrap on Linear 
Regression:

for i in range(10000):

    i = randint(20, size=20)

    slope, intercept = fit(x[i], y[i])

    results[i] = (slope, intercept)



Notes on Bootstrapping:
- Bootstrap resampling is well-studied and 

rests on solid theoretical grounds.

- Bootstrapping often doesn’t work well for 
rank-based statistics (e.g. maximum value)

- Works poorly with very few samples
(N > 20 is a good rule of thumb)

- As always, be careful about selection 
biases & non-independent data!



Four Recipes for
Hacking Statistics:

1. Direct Simulation
2. Shuffling
3. Bootstrapping
4. Cross Validation



Onceler Industries: 
Sales of Thneeds

I'm being quite useful!
This thing is a Thneed.

A Thneed's a Fine-Something-
That-All-People-Need!



Thneed sales seem to show a 
trend with temperature . . .



y = a + bx
y = a + bx + cx2

But which model is a better fit?



y = a + bx
y = a + bx + cx2

Can we judge by root-mean-
square error?

RMS error = 63.0
RMS error = 51.5



In general, more flexible models will 
always have a lower RMS error.

y = a + bx
y = a + bx + cx2

y = a + bx + cx2 + dx3

y = a + bx + cx2 + dx3 + ex4

y = a + ⋯



y = a + bx + cx2 + dx3 + ex4 + fx5 + ⋯ + nx14

RMS error does not
tell the whole story.



Not to worry:
Statistics has figured this out.



Classic Method

Difference in Mean 
Squared Error follows 
chi-square distribution:



Classic Method

Can estimate degrees of 
freedom easily because 
the models are nested . . .

Difference in Mean 
Squared Error follows 
chi-square distribution:



Classic Method

Can estimate degrees of 
freedom easily because 
the models are nested . . .

Difference in Mean 
Squared Error follows 
chi-square distribution:

Plug in our numbers . . .



Classic Method

Can estimate degrees of 
freedom easily because 
the models are nested . . .

Difference in Mean 
Squared Error follows 
chi-square distribution:

Plug in our numbers . . .

Wait… what question 
were we trying to 

answer again?



Another Approach:
Cross Validation



Cross-Validation



Cross-Validation

1. Randomly Split data



Cross-Validation

1. Randomly Split data



Cross-Validation

2. Find the best model for each subset



Cross-Validation

3. Compare models across subsets



Cross-Validation

3. Compare models across subsets



Cross-Validation

3. Compare models across subsets



Cross-Validation

3. Compare models across subsets



Cross-Validation

4. Compute RMS error for each

RMS = 48.9RMS = 55.1

RMS estimate = 52.1



Cross-Validation

Repeat for as long as 
you have patience . . .



Cross-Validation

5. Compare cross-validated RMS for models:



Cross-Validation

Best model minimizes the
cross-validated error.

5. Compare cross-validated RMS for models:



   . . . I biggered the loads
of the thneeds I shipped out!
   I was shipping them forth,
to the South, to the East
   to the West, to the North!



Notes on Cross-Validation:

- This was “2-fold” cross-validation; other 
CV schemes exist & may perform better 
for your data (see e.g. scikit-learn docs)

- Cross-validation is the go-to method for 
model evaluation in machine learning, 
as statistics of the models are often not 
known in the classical sense.

- Again: caveats about selection bias and 
independence in data.



Four Recipes for
Hacking Statistics:

1. Direct Simulation
2. Shuffling
3. Bootstrapping
4. Cross Validation



Sampling Methods
allow you to use intuitive computational 

approaches in place of often
non-intuitive statistical rules.

If you can write a for-loop
you can do statistical analysis.



Things I didn’t have time for:

- Bayesian Methods: very intuitive & powerful 
approaches to more sophisticated modeling.
(see e.g. Bayesian Methods for Hackers by Cam Davidson-Pilon)

- Selection Bias: if you get data selection 
wrong, you’ll have a bad time.
(See Chris Fonnesbeck’s Scipy 2015 talk, Statistical Thinking for Data Science)

- Detailed considerations on use of sampling, 
shuffling, and bootstrapping.
(I recommend Statistics Is Easy by Shasha & Wilson
 And Resampling: The New Statistics by Julian Simon)



– Dr. Seuss (attr)



~ Thank You! ~

Email: jakevdp@uw.edu

Twitter: @jakevdp

Github: jakevdp

Web: http://vanderplas.com/

Blog: http://jakevdp.github.io/

Slides available at
http://speakerdeck.com/jakevdp/statistics-for-hackers/

https://speakerdeck.com/jakevdp/statistics-for-hackers/
https://speakerdeck.com/jakevdp/statistics-for-hackers/

