Statistics for Hackers

Jake VanderPlas
PyCon 2016

<About Me>

- Astronomer by training
- Statistician by accident
- Active in Python science \& open source
- Data Scientist at UW eScience Institute
- @jakevdp on Twitter \& Github

Stałistics for Hackers

Słatistics for Hackers

Hacker (n.)

1. A person who is trying to steal your grandma's bank password.

Hacker (n.)

1. A person who is trying to steat your grandma's bank password.
2. A person whose natural approach to problem-solving involves writing code.

Statistics is Hard.

Statistics is Hard.

Using programming skills, it can be easy.

My thesis today:
 If you can write a for-loop, you can do statistics

Statistics is fundamentally about

Asking the Right Question.

Sometimes the questions are complicated and the answers are simple.

- Dr. Seuss (attr)

Warm-up

Warm-up: Coin Toss

You toss a coin 30

 times and see 22 heads. Is it a fair coin?(舜)

A fair coin should show 15 heads in 30 tosses. This coin is biased.

Classic Method:

Assume the Skeptic is correct: test the Null Hypothesis.

What is the probability of a fair coin showing 22 heads simply by chance?

Classic Method:

$N_{H}=22, N_{T}=8$
Start computing probabilities ...

$$
\begin{aligned}
& P(H)=\frac{1}{2} \\
& P(H H)=\left(\frac{1}{2}\right)^{2}
\end{aligned}
$$

(3)

Classic Method:

$N_{H}=22, N_{T}=8$
$P(H H T)=\left(\frac{1}{2}\right)^{3}$
$P(2 H, 1 T)=P(H H T)$
$+P(H T H)$
$+P($ THH $)$
$=\frac{3}{8}$
(3)

Classic Method:

$N_{H}=22, N_{T}=8$
$P\left(N_{H}, N_{T}\right)=\binom{N}{N_{H}}\left(\frac{1}{2}\right)^{N_{H}}\left(1-\frac{1}{2}\right)^{N_{T}}$
Number of arrangements (binomial coefficient)

Probability of N_{H} heads

Probability of
N_{T} tails

Classic Method:

$$
N_{H}=22, N_{T}=8
$$

$$
P\left(N_{H}, N_{T}\right)=\binom{N}{N_{H}}\left(\frac{1}{2}\right)^{N_{H}}\left(1-\frac{1}{2}\right)^{N_{T}}
$$

(3)

Classic Method:

$$
N_{H}=22, N_{T}=8
$$

$$
P\left(N_{H}, N_{T}\right)=\binom{N}{N_{H}}\left(\frac{1}{2}\right)^{N_{H}}\left(1-\frac{1}{2}\right)^{N_{T}}
$$

(孩)

Classic Method:

$$
N_{H}=22, N_{T}=8
$$

$$
P\left(N_{H}, N_{T}\right)=\binom{N}{N_{H}}\left(\frac{1}{2}\right)^{N_{H}}\left(1-\frac{1}{2}\right)^{N_{T}}
$$

(3)

Classic Method:

Probability of 0.8% (i.e. $p=0.008$) of observations given a fair coin.
\rightarrow reject fair coin hypothesis at $\mathbf{p}<0.05$

Could there be an easier way?

Easier Method:

Just simulate it!

$$
\rightarrow \text { reject fair coin at } p=0.008
$$

$$
\begin{aligned}
& \text { M = } 0 \\
& \text { for i in range(10000): } \\
& \text { trials = randint(2, size=30) } \\
& \text { if (trials.sum() >= 22): } \\
& \text { M += } 1 \\
& p=M / 10000 \text { \# 0.008149 }
\end{aligned}
$$

In general...
 Computing the Sampling Distribution is Hard.

In general...

Computing the Sampling Distribution is Hard.

Simulating the Sampling Distribution is Easy.

Four Recipes for Hacking Statistics:

Sneeches:

 Stars and

 Stars and Intelligence

Now, the Star-Belly Sneetches had bellies with stars.
The Plain-Belly Sneetches had none upon thars ...

Sneeches:
 Stars and Intelligence

Test Scores

$\boldsymbol{\star}$		x	
84	72	81	69
57	46	74	61
63	76	56	87
99	91	69	65
		66	44
		62	69

^ mean: 73.5 x mean: 66.9 difference: 6.6

Is this difference of 6.6 statistically significant?

\author{

* mean: 73.5
 x mean: 66.9
 difference: 6.6
}

Classic

Method

$$
t=\frac{\bar{X}_{1}-\bar{X}_{2}}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}
$$

Classic

(Welch's t-test)

Method

$$
t=\frac{73.5-66.9}{\sqrt{\frac{316.3}{8}+\frac{124.8}{12}}}=0.932
$$

Classic

(Student's t distribution)

Method

$$
p(t ; \nu)=\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu \pi} \Gamma\left(\frac{\nu}{2}\right)}\left(1+\frac{t^{2}}{\nu}\right)^{-\frac{\nu+1}{2}}
$$

Classic
 Method

(Student's t distribution)

Degree of Freedom: "The number of independent ways by which a dynamic system can move, without violating any constraint imposed on it."
-Wikipedia

Classic
 (Student's t distribution) Method

Classic

Method

$$
\nu \approx \frac{\left(\frac{s_{1}^{2}}{N_{1}}+\frac{s_{2}^{2}}{N_{2}}\right)^{2}}{\frac{s_{1}^{4}}{N_{1}^{2}\left(N_{1}-1\right)}+\frac{s_{2}^{4}}{N_{2}^{2}\left(N_{2}-1\right)}}
$$

Classic

(Welch-Satterthwaite equation)

Method

$$
\nu \approx \frac{\left(\frac{316.3}{8}+\frac{124.8}{12}\right)^{2}}{\frac{316.3^{2}}{8^{2}(8-1)}+\frac{124.8^{2}}{12^{2}(12-1)}}=10.7
$$

a (1 tail)

0.05
0.025
0.01
0.005
0.0025
0.001
0.0005

Classic

Classic Method

$$
t>t_{c r i t}
$$

Classic Method

$0.932>1.796$

Classic Method

$0.932>1.796$

"The difference of 6.6 is not significant at the $\mathrm{p}=0.05$ level"

The biggest problem: We've entirely lost-track of what question we're answering!

< One popular alternative ... > "Why don't you just . . ."

from statsmodels.stats.weightstats import ttest_ind t, p, dof = ttest_ind(group1, group2,

$$
\begin{aligned}
& \text { alternative='larger', } \\
& \text { usevar='unequal') }
\end{aligned}
$$

print(p) \# 0.186

< One popular alternative ... > "Why don't you just . . ."

from statsmodels.stats.weightstats import ttest_ind t, p, dof = ttest_ind(group1, group2,

$$
\begin{aligned}
& \text { alternative='larger', } \\
& \text { usevar='unequal') }
\end{aligned}
$$

print(p) \# 0.186
... But what question is this answering?

Stepping Back...

 The deep meaning lies in the sampling distribution:$$
p(t ; \nu)=\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu \pi} \Gamma\left(\frac{\nu}{2}\right)}\left(1+\frac{t^{2}}{\nu}\right)^{-\frac{\nu+1}{2}}
$$

Same principle as the coin example:

Let's use a sampling method instead

The Problem:

Unlike coin flipping, we don't have a generative model...

The Problem:

Unlike coin flipping, we don't have a generative model...

Solution:
Shuffling

$\boldsymbol{\star}$		x

Idea:

Simulate the distribution by shuffling the labels repeatedly and computing the desired statistic.

Motivation: if the labels really don't matter, then switching them shouldn't change the result!

*		\times		1. Shuffle Labels 2. Rearrange 3. Compute means
84	72	81	69	
57	46	74	61	
63	76	56	87	
99	91	69	65	
		66	44	
		62	69	

\star		\mathbf{x}		1. Shuffle Labels
84	72	81	69	2. Rearrange
57	46	74	61	
63	76	56	87	
99	91	69	65	
		66	44	
		62	69	

\star		x		1. Shuffle Labels 2. Rearrange 3. Compute means
84	81	72	69	
61	69	74	57	
65	76	56	87	
99	44	46	63	
		66	91	
		62	69	

\star		x		1. Shuffle Labels 2. Rearrange 3. Compute means
84	81	72	69	
61	69	74	57	
65	76	56	87	
99	44	46	63	
		66	91	
		62	69	

* mean: 72.4
x mean: 67.6
difference: 4.8

\boldsymbol{x}		x
84	81	72
69	69	74
67		
65	76	56
99	44	46
		63
		66
	91	
		69

* mean: 72.4
x mean: 67.6
difference: 4.8

1. Shuffle Labels
2. Rearrange 3. Compute means

$\boldsymbol{\star}$		x	
84	81	72	69
61	69	74	57
65	76	56	87
99	44	46	63
		66	91
		62	69

1. Shuffle Labels
2. Rearrange
3. Compute means

$\boldsymbol{\star}$		x	
84	56	72	69
61	63	74	57
65	66	81	87
62	44	46	69
		76	91
		99	69

Ł mean: 62.6
x mean: 74.1
difference: -11.6

1. Shuffle Labels
2. Rearrange 3. Compute means

$\boldsymbol{\star}$		x

1. Shuffle Labels
2. Rearrange
3. Compute means

$\boldsymbol{\star}$			
74	56	72	69
61	63	84	57
87	76	81	65
91	99	46	69
		66	62
		44	69

\star mean: 75.9
x mean: 65.3 difference: 10.6

1. Shuffle Labels
2. Rearrange 3. Compute means

$\boldsymbol{\star}$		x	
84	56	72	69
61	63	74	57
65	66	81	87
62	44	46	69
		76	91
		99	69

1. Shuffle Labels
2. Rearrange
3. Compute means

$\boldsymbol{\star}$		x	
84	81	69	69
61	69	87	74
65	76	56	57
99	44	46	63
		66	91
		62	72

1. Shuffle Labels
2. Rearrange
3. Compute means

$\boldsymbol{\star}$		x	
74	62	72	57
61	63	84	69
87	81	76	65
91	99	46	69
		66	56
		44	69

1. Shuffle Labels
2. Rearrange
3. Compute means

$\frac{N_{>6.6}}{N_{\text {tot }}}=\frac{1608}{10000}=0.16$

"A difference of 6.6 is not significant at $p=0.05$."

That day, all the Sneetches forgot about stars
And whether they had one, or not, upon thars.

Notes on Shuffling:

- Works when the Null Hypothesis assumes two groups are equivalent
- Like all methods, it will only work if your samples are representative - always be careful about selection biases!
- Needs care for non-independent trials. Good discussion in Simon's Resampling: The New Statistics

Four Recipes for Hacking Statistics:

\author{

1. Direct Simulation $\sqrt{ }$
 2. Shuffling $\sqrt{ }$
 3. Bootstrapping
 4. Cross Validation
}

Yertle's Turtle Tower

On the far-away island of Sala-ma-Sond, Yertle the Turtle was king of the pond. . .

How High can Yertle stack his turtles?

Observe 20 of Yertle's turtle towers . . .

$\stackrel{8}{8} 48$	24	32	61	15	51	12	32		18	19	4
$\stackrel{\text { ¢ }}{ } 21$	41	29	21	2	25	23	42		18	23	13

- What is the mean of the number of turtles in Yertle's stack?
- What is the uncertainty on this estimate?

Classic Method:

Sample Mean:

$$
\bar{x}=\frac{1}{N} \sum_{i=1}^{N} x_{i}=28.9
$$

Standard Error of the Mean:

$$
\sigma_{\bar{x}}=\frac{1}{\sqrt{N}} \sqrt{\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}=3.0
$$

What assumptions go into these formulae?

Can we use sampling instead?

Problem:

As before, we don't have a generating model...

Problem:

As before, we don't have a generating model...

Solution:
Bootstrap Resampling

Bootstrap Resampling:

48	24	51	12
21	41	25	23
32	61	19	24
29	21	23	13
32	18	42	18

Idea:

Simulate the distribution by drawing samples with replacement.

Motivation:

The data estimates its own distribution - we draw random samples from this distribution.

Bootstrap Resampling:

48	24	51	12
21	41	25	23
32	61	19	24
29	21	23	13
32	18	42	18

Idea:

Simulate the distribution by drawing samples with replacement.

Motivation:

The data estimates its own distribution - we draw random samples from this distribution.

Bootstrap Resampling:

48	24	51	12
21	41	25	23
32	61	19	24
29	21	23	13
32	18	42	18

Idea:

Simulate the distribution by drawing samples with replacement.

Motivation:

The data estimates its own distribution - we draw random samples from this distribution.

21									

Bootstrap Resampling:

48	24	51	12
21	41	25	23
32	61	19	24
29	21	23	13
32	18	42	18

Idea:

Simulate the distribution by drawing samples with replacement.

Motivation:

The data estimates its own distribution - we draw random samples from this distribution.

21	19								

Bootstrap Resampling:

48	24	51	12
21	41	25	23
32	61	19	24
29	21	23	13
32	18	42	18

Idea:

Simulate the distribution by drawing samples with replacement.

Motivation:

The data estimates its own distribution - we draw random samples from this distribution.

21	19	25							

Bootstrap Resampling:

48	24	51	12
21	41	25	23
32	61	19	24
29	21	23	13
32	18	42	18

Idea:

Simulate the distribution by drawing samples with replacement.

Motivation:

The data estimates its own distribution - we draw random samples from this distribution.

21	19	25	24						

Bootstrap Resampling:

48	24	51	12
21	41	25	23
32	61	19	24
29	21	23	13
32	18	42	18

Idea:

Simulate the distribution by drawing samples with replacement.

Motivation:

The data estimates its own distribution - we draw random samples from this distribution.

21	19	25	24	23					

Bootstrap Resampling:

48	24	51	12
21	41	25	23
32	61	19	24
29	21	23	13
32	18	42	18

Idea:

Simulate the distribution by drawing samples with replacement.

Motivation:

The data estimates its own distribution - we draw random samples from this distribution.

21	19	25	24	23	19				

Bootstrap Resampling:

48	24	51	12
21	41	25	23
32	61	19	24
29	21	23	13
32	18	42	18

Idea:

Simulate the distribution by drawing samples with replacement.

Motivation:

The data estimates its own distribution - we draw random samples from this distribution.

21	19	25	24	23	19	41			

Bootstrap Resampling:

48	24	51	12
21	41	25	23
32	61	19	24
29	21	23	13
32	18	42	18

Idea:

Simulate the distribution by drawing samples with replacement.

Motivation:

The data estimates its own distribution - we draw random samples from this distribution.

21	19	25	24	23	19	41	23		

Bootstrap Resampling:

48	24	51		12	Idea: Simulate the distribution by drawing samples with replacement.				
21	41	25		23					
32	61	19		24					
29	21	23		13	Motivation: The data estimates its own distribution - we draw random samples from this distribution.				
32	18	42	18						
21	19	25	24	23	19	41	23	41	1

Bootstrap Resampling:

48	24	51		12	Idea:					
21	41	25		23	Simulate the distribution by drawing samples with replacement.					
32	61	19		24						
29	21	23		13	Motivation: The data estimates its own distribution - we draw random samples from this distribution.					
32	18	42		18						
21	19	25	24	23	19	41	23	41	18	

Bootstrap Resampling:

48	24	51		12	Idea: Simulate the distribution by drawing samples with replacement.					
21	41	25		23						
32	61	19		24						
29	21	23		13	Motivation: The data estimates its own distribution - we draw random samples from this distribution.					
32	18	42		18						
21	19	25	24	23	19	41	1	23	41	18
61										

Bootstrap Resampling:

48	24	51		12	Idea: Simulate the distribution by drawing samples with replacement.					
21	41	25		23						
32	61	19		24						
29	21	23		13	Motivation: The data estimates its own distribution - we draw random samples from this distribution.					
32	18	42		18						
21	19	25	24	23	19	41	23		41	18
61	12									

Bootstrap Resampling:

Bootstrap Resampling:

48	24	51	12	2	Idea:				
21	41	25	23	3	Simulate the distribution by drawing samples with replacement.				
32	61	19	2	2					
29	21	23	13	3	Motivation: The data estimates its own distribution - we draw random samples from this distribution.				
32	18	42		8					
21	19	25	24	23	19	41	23	41	18
61	12	42	42						

Bootstrap Resampling:

48	24	51		12	Idea:					
21	41	25	5	23	Simulate the distribution by drawing samples with replacement.					
32	61	19		24						
29	21	23	313	13	Motivation: The data estimates its own distribution - we draw random samples from this distribution.					
32	18	42	1	18						
21	19	25	24	23	19	41	23	4	1	18
61	12	42	42	42						

Bootstrap Resampling:

48	24	51		12	Idea:				
21	41	25		23	Simulate the distribution by drawing samples with replacement.				
32	61	19		24					
29	21	23	313	13	Motivation: The data estimates its own distribution - we draw random samples from this distribution.				
32	18	42	1	18					
21	19	25	24	23	19	41	23	41	18
61	12	42	42	42	19				

Bootstrap Resampling:

48	24	51	1	2	Idea:					
21	41	25		23	Simulate the distribution by drawing samples with replacement.					
32	61	19		24						
29	21	23	313	3	Motivation: The data estimates its own distribution - we draw random samples from this distribution.					
32	18	42	18	8						
21	19	25	24	23	19	41	23	41		18
61	12	42	42	42	19	18				

Bootstrap Resampling:

48	24	51	12
21	41	25	23
32	61	19	24
29	21	23	13
32	18	42	18

Idea:

Simulate the distribution by drawing samples with replacement.

Motivation:

The data estimates its own distribution - we draw random samples from this distribution.

21	19	25	24	23	19	41	23	41	18
61	12	42	42	42	19	18	61		

Bootstrap Resampling:

48	24	51	12	2	Idea:				
21	41	25		23	Simulate the distribution by drawing samples with replacement.				
32	61	19		24					
29	21	23		3	Motivation: The data estimates its own distribution - we draw random samples from this distribution.				
32	18	42		8					
21	19	25	24	23	19	41	23	41	18
61	12	42	42	42	19	18	61	29	

Bootstrap Resampling:

48	24	51	12	2	Idea:				
21	41	25	23	3	Simulate the distribution by drawing samples with replacement.				
32	61	19	2	4					
29	21	23	13	3	Motivation: The data estimates its own distribution - we draw random samples from this distribution.				
32	18	42	18	8					
21	19	25	24	23	19	41	23	41	18
61	12	42	42	42	19	18	61	29	41

Bootstrap Resampling:

48	24	51	12
21	41	25	23
32	61	19	24
29	21	23	13
32	18	42	18

Idea:

Simulate the distribution by drawing samples with replacement.

Motivation:

The data estimates its own distribution - we draw random samples from this distribution.

21	19	25	24	23	19	41	23	41	18
61	12	42	42	42	19	18	61	29	41

Repeat this several thousand times . . .

Recovers The Analytic Estimate!

```
for i in range(10000):
    sample = N[randint(20, size=20)]
    xbar[i] = mean(sample)
mean(xbar), std(xbar)
# (28.9, 2.9)
```


Bootstrap sampling

 can be applied even to more involved statistics
Bootstrap on Linear Regression:

What is the relationship between speed of wind and the height of the Yertle's turtle tower?

Bootstrap on Linear Regression:
 r

for i in range(10000):
i = randint(20, size=20)
slope, intercept = fit(x[i], y[i])
results[i] = (slope, intercept)

Notes on Bootstrapping:

- Bootstrap resampling is well-studied and rests on solid theoretical grounds.
- Bootstrapping often doesn't work well for rank-based statistics (e.g. maximum value)
- Works poorly with very few samples ($\mathrm{N}>20$ is a good rule of thumb)
- As always, be careful about selection biases \& non-independent data!

Four Recipes for Hacking Statistics:

\author{

1. Direct Simulation $\sqrt{ }$
 2. Shuffling $\sqrt{ }$
 3. Bootstrapping $\sqrt{ }$
 4. Cross Validation
}

Onceler Industries: Sales of Thneeds

I'm being quite useful!
This thing is a Thneed.
A Thneed's a Fine-Something-That-All-People-Need!

Thneed sales seem to show a trend with temperature . . .

But which model is a better fit?

Can we judge by root-meansquare error?

In general, more flexible models will always have a lower RMS error.

RMS error does not tell the whole story.

Not to worry:
Statistics has figured this out.

Classic Method

Difference in Mean
$\begin{aligned} & \text { Squared Error follows } \\ & \text { chi-square distribution: }\end{aligned} p(x ; \nu)=\frac{1}{2^{\nu / 2} \Gamma\left(\frac{\nu}{2}\right)} x^{\frac{\nu}{2}-1} e^{-\frac{x}{2}}$

Classic Method

Difference in Mean
$\begin{aligned} & \text { Squared Error follows } \\ & \text { chi-square distribution: }\end{aligned} p(x ; \nu)=\frac{1}{2^{\nu / 2} \Gamma\left(\frac{\nu}{2}\right)} x^{\frac{\nu}{2}-1} e^{-\frac{x}{2}}$

Can estimate degrees of freedom easily because the models are nested ...

$$
\begin{gathered}
\nu \approx \nu_{2}-\nu_{1} \\
\nu_{2} \approx\left(N-d_{2}\right) \\
\nu_{1} \approx\left(N-d_{1}\right)
\end{gathered}
$$

Classic Method

Difference in Mean
$\begin{aligned} & \text { Squared Error follows } \\ & \text { chi-square distribution: }\end{aligned} p(x ; \nu)=\frac{1}{2^{\nu / 2} \Gamma\left(\frac{\nu}{2}\right)} x^{\frac{\nu}{2}-1} e^{-\frac{x}{2}}$

Can estimate degrees of freedom easily because the models are nested ...

$$
\begin{gathered}
\nu \approx \nu_{2}-\nu_{1} \\
\nu_{2} \approx\left(N-d_{2}\right) \\
\nu_{1} \approx\left(N-d_{1}\right)
\end{gathered}
$$

Plug in our numbers ...

Classic Method

Different Wait... what question chi-square were we trying to Can estimate answer again? freedom easily because the models are nested . . .

$$
\begin{aligned}
& \nu_{2} \approx\left(N-d_{2}\right) \\
& \nu_{1} \approx\left(N-d_{1}\right)
\end{aligned}
$$

Plug in our numbers...

Another Approach: Cross Validation

Cross-Validation

Cross-Validation

1. Randomly Split data

Cross-Validation

1. Randomly Split data

Cross-Validation

2. Find the best model for each subset

Cross-Validation

3. Compare models across subsets

Cross-Validation

3. Compare models across subsets

Cross-Validation

3. Compare models across subsets

Cross-Validation

3. Compare models across subsets

Cross-Validation

4. Compute RMS error for each

RMS estimate $=52.1$

Cross-Validation

Repeat for as long as
you have patience...

Cross-Validation

5. Compare cross-validated RMS for models:

Cross-Validation

5. Compare cross-validated RMS for models:

I biggered the loads of the thneeds I shipped out! I was shipping them forth, to the South, to the East to the West, to the North!

Notes on Cross-Validation:

- This was "2-fold" cross-validation; other CV schemes exist \& may perform better for your data (see e.g. scikit-learn docs)
- Cross-validation is the go-to method for model evaluation in machine learning, as statistics of the models are often not known in the classical sense.
- Again: caveats about selection bias and independence in data.

Four Recipes for Hacking Statistics:

\author{

1. Direct Simulation $\sqrt{ }$
 2. Shuffling $\sqrt{ }$
 3. Bootstrapping 4. Cross Validation $\sqrt{ }$
}

Sampling Methods

allow you to use intuitive computational approaches in place of often non-intuitive statistical rules.

If you can write a for-loop you can do statistical analysis.

Things I didn't have time for:

- Bayesian Methods: very intuitive \& powerful approaches to more sophisticated modeling. (see e.g. Bayesian Methods for Hackers by Cam Davidson-Pilon)
- Selection Bias: if you get data selection wrong, you'll have a bad time. (See Chris Fonnesbeck's Scipy 2015 talk, Statistical Thinking for Data Science)
- Detailed considerations on use of sampling. shuffling, and bootstrapping. (I recommend Statistics Is Easy by Shasha \& Wilson And Resampling: The New Statistics by Julian Simon)

Sometimes the questions are complicated and the answers are

- Dr. Seuss (attr)

~ Thank You! ~

jakevdp@uw.edu

Twitter: @jakevdp
(9) Github: jakevdp
\# Web:
http://vanderplas.com/
http://jakevdp.github.io/

Slides available at
http://speakerdeck.com/jakevdp/statistics-for-hackers/

