A BEGINNER’'S GUIDE
TO DEEP LEARNING

Irene Chen

@irenetrampoline
PyCon 2016

“A beginner’s guide to
deep learning”

“A beginner’s guide to
deep learning”

Convolutional nets
Backpropagation
Image recognition
Restricted Boltzmann machines

DeepMind’s AlphaGo beating
professional Go player Lee Sedol

Nvidia and its latest GPU architecture

Toyota’s $1 billion Al investment
Facebook is building Al that builds Al

Geoff Hinton
Yann LeCun

Andrew Ng
Yoshua Bengio

deep learning

All News Videos Books Images

Aboug 13,100,000 results (0.48 seconds)

theano

The standard type of RBM has binary-valued (Boolean/Bernoulli) hidden rrone e o T

and visible units, and consists of a matrix of weights W' = (w; ;) ; th:ﬂ;}g;sandggx. e e fendonStresns = RendonStreans
(size mxn) associated with the connection between hidden unit /2 jand [load mnist

visible unit V;, as well as bias weights (offsets) @; for the visible units 7 srng - RandomStreams()

and bj for the hidden units. Given these, the energy of a configuration def floatX(X):

np.asarray(X, dtype-theano.config.floatX)

(pair of boolean vectors) (v,4) is defined as
def init_weights(shape):

E('U. h) — - Z a;v; — Z b_] h] - Z Z l"iu'i,jhj theano.shared(floatX(np.random. randn(+shape)
i] J

i def rectify(X):
T.maximum(X, 0.)
or, in matrix notation,
‘ ‘ _ 18 def softmax(X): ‘ _
E('U. h) — —(IT'l-' . bTII . 'l-'Tn-?h e_x = T.exp(X - X.max(axis=1).dimshuffle(o, 'x'))

e_x / e_x.sum({axis=1).dimshuffle(o, 'x"')

This energy function is analogous to that of a Hopfield network. As in 22 def RMSprop(cost, params, 1r-0.001, rho=0.9, epsilon=1e-6):
. e C . . grads = T.grad(cost-cost, wrt=params)
general Boltzmann machines, probability distributions over hidden 24 updates - []
.19 zip(params, grads):
and/or visible vectors are defined in terms of the energy function:[° theano. shared(p.get_value() * 0.)
1 27 acc_new = rho * acc + (1 - rho) * g p
—E(v,h) 28 gradient_scaling - T.sqrt(acc_new + epsilon)
P('U.h) = —E€ g - g / gradient_scaling
Z 30 updates.append((acc, acc_new))
) i)) . 31 updates.append((p, p - 1r * g))
where 7 is a partition function defined as the sum of ,—E(v.1) over all 8 updates
possible configurations (in other words, just a normalizing constantto ES dropout (X, p=0.):
- A . A . S p 0:
ensure the probability distribution sums to 1). Similarly, the (marginal) 36 e D
probability of a visible (input) vector of booleans is the sum over all 37 X i;:g;:lgggga“x' shape, p=retain_prob, dtype=theano.confi
possible hidden layer configurations:[°! 3¢ X -
1 —E(v,h
P('v)zfg e~ Ewh)

h

Too much math Too much code

Today

*Why now?

‘Neural Networks in 7 minutes
‘Deep nets in Cafte

WHY NOW?

Engine (neural
network)

Engine (neural
network)

Fuel
(data)

Classifier

Input —> FREELHTIT —> Qutput

Classifier —> Ripe?

Trained Classifier

Logistic regression
Naive Bayes
Support vector machine
K-nearest neighbors
Random forests

Trained Classifier

Lesson 1: Why now? Big
data, big processing power,
robust neural networks

NEURAL NETWORKS IN 7

Photo: Rebecca-Lee (Flickr)

Input Nodes

Output Nodes

Input Nodes

Output Nodes

Input Nodes
’ Output Nodes

Input Nodes

Output Nodes

Input Nodes

A

Output Nodes

>

>

Sigmoid

Wikipedia

Input Nodes

A

Output Nodes

>

>

Input Nodes
e D ’

A

Output Nodes

>

>

Input Nodes
’ Output Nodes

Input Nodes

Hidden

layers

Input Nodes
’ Output Nodes

Input Nodes

Output Nodes

@
o

Input Nodes

Output Nodes

) O

Input Nodes

Output Nodes

Input Nodes

Output Nodes

Input Nodes

Output Nodes

Input Nodes

Output Nodes

Forward propagation

Input Nodes

Output Nodes

@
o

Input Nodes

Output Nodes

Input Nodes

Output Nodes

) O

Input Nodes

Output Nodes

No randomness!

Input Nodes
?
! ?
Output Nodes
?

Backpropagation

Output Nodes

Output Nodes

Output Nodes

Output Nodes

Output Nodes

L

10

0.5

Output Nodes

st

A

4

Output Nodes

\4

20

S

L

10

0.5

Output Nodes

st

A

4

JE

—— = 0 * X for all weights and biases
aWij J L g

: 0; = Oy (1 — O) for output layer nodes using softmax

: (p]'- = {(1— (pj) * (1 + (pj) for hidden layer nodes using tanh

: goj'- =@j*(1—9j) for hidden layer nodes using logistic sigmoid
. € = (Oj = j) for hidden and output layer nodes
. 0j = g * Oj' if j is an output node
8 =26 w)* @ f jis a hidden node
oE _ _
. Aw; = A delta for all weights and biases
an'j

: Wij, —-Wij .3 AWij update for all weights and biases

Values of the nodes
Amount of error
Weights of edges

Learning rate

L

10

0.5

Output Nodes

A

5

st

L

10

0.5

Output Nodes

A

5

st

L

10

0.5

Output Nodes

A

5

%%

Error vs. Iteration
O 1 1 1 1 1 1] 1

Error (dB)
®

1 1 1
50 100 150 200 250 300 350 400
[teration

Tuning parameters

Input Nodes

Output Nodes

Carlos Xavier Soto

[Lesson 2: Neural networks
can be trained on labeled
data to classity avocados

DEEP NETS ON CAFFE

Scikit-learn
Cafte
Theano
iPython Notebook

Classification

Identifying to which category an object
belongs to.

Applications: Spam detection, Image
recognition.

Installation Documentation ~

Examples

W l¢" Custom Search

scikit-learn

Machine Learning in Python

Regression

Predicting a continuous-valued attribute
associated with an object.

Applications: Drug response, Stock prices.
Algorithms: SVR, ridge regression, Lasso, ...

Clustering

Automatic grouping
sets.

Applications: Custc
Grouping experimen
Algorithms: k-Mear

Algorithms: SVM, nearest neighbors, — Examples
random forest, ... — Examples mean-shift, ...
Dimensionality reduction Model selection Preprocessing

Reducing the number of random variables to Comparing, validating and choosing Feature extraction a

Caffe Caffe

Deep learning framework Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is

by the BVLC developed by the Berkeley Vision and Learning Center (BVLC) and by community contributors.
Yanggqing Jia created the project during his PhD at UC Berkeley. Caffe is released under the BSD 2-

Created by Clause license.

Yangqing Jia

Lead Developer Check out our web image classification demo!

Evan Shelhamer

Why Caffe?

Expressive architecture encourages application and innovation. Models and optimization are
defined by configuration without hard-coding. Switch between CPU and GPU by setting a single flag
to train on a GPU machine then deploy to commodity clusters or mobile devices.

Extensible code fosters active development. In Caffe’s first year, it has been forked by over 1,000
developers and had many significant changes contributed back. Thanks to these contributors the
framework tracks the state-of-the-art in both code and models.

Speed makes Caffe perfect for research experiments and industry deployment. Caffe can process
over 60M images per day with a single NVIDIA K40 GPU*. That's 1 ms/image for inference and 4
ms/image for learning. We believe that Caffe is the fastest convnet implementation available.

Community: Caffe already powers academic research projects, startup prototypes, and even large-
scale industrial applications in vision, speech, and multimedia. Join our community of brewers on

_release EJ Theano 0.8.2 documentation »

Welcome

Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-
dimensional arrays efficiently. Theano features:

¢ tight integration with NumPy - Use numpy.ndarray in Theano-compiled functions.

e transparent use of a GPU - Perform data-intensive calculations up to 140x faster than with CPU.(float32 only)
« efficient symbolic differentiation - Theano does your derivatives for function with one or many inputs.

+ speed and stability optimizations - Get the right answer for log(1+x) even when x is really tiny.

¢ dynamic C code generation - Evaluate expressions faster.

« extensive unit-testing and self-verification - Detect and diagnose many types of errors.

Theano has been powering large-scale computationally intensive scientific investigations since 2007. But it is also
approachable enough to be used in the classroom (University of Montreal’s deep learning/machine learning classes).

News

e 2016/05/09: New technical report on Theano: Theano: A Python framework for fast computation of mathematical
expressions. This is the new preferred reference.

e 2016/04/21: Release of Theano 0.8.2, adding support for CUDNN v5.

e 2016/03/29: Release of Theano 0.8.1, fixing a compilation issue on MacOS X with XCode 7.3.

e 2016/03/21: Release of Theano 0.8. Everybody is encouraged to update.

e Multi-GPU.

¢ We added support for CNMeM to speed up the GPU memory allocation.

e Theano 0.7 was released 26th March 2015. Everybody is encouraged to update.

e We support cuDNN if it is installed by the user.

e Open Machine Learning Workshop 2014 presentation.

e Colin Raffel tutorial on Theano.

¢ lan Goodfellow did a 12h class with exercises on Theano.

L L [

next | modules | index

theano

Table Of Contents

Welcome

News

Download

Status

Citing Theano
Documentation
Community

Help!

= How to Seek Help

= How to provide help

Release Notes

Show Source

Enter search terms or a module,
class or function name.

I P [y]: i[nlzzgcr:(i)vr: Computing

Install - Documentation : Project - Jupyter - News : Cite - Donate

The Jupyter Notebook e

NOTEBOOK
(Formerly known as the IPython Notebook) VIEWER

Share your notebooks

The IPython Notebook is now known as the Jupyter Notebook. It is an interactive computational
environment, in which you can combine code execution, rich text, mathematics, plots and rich media.
For more details on the Jupyter Notebook, please see the Jupyter website.

COMMUNITY

Stack Overflow
Mailing list

File a bug
Reddit

FOR DEVELOPERS
Mailing list

Scikit-learn
Cafte
Theano
iPython Notebook

Loading a pre-trained
network into Catfte

IM&GENE T

Large Scale Visual

Recognition Challenge 2010
(ILSVRC 2010)

10 million images
10,000 object classes
310,000 iterations

BVLC / caffe ® Watch 1,408 s Star 1049 Y Fork 6,247

<> Code (1) Issues 421 1) Pull requests 218 == Wiki 4~ Pulse .l Graphs

Branch: master v caffe / examples / 00-classification.ipynb Find file Copy path

; longjon [example] improve classification notebook bd6bo3f Feb 24, 2016

3 contributors n H a

781 lines (780 sloc) 794 KB Raw Blame History [J .~ 1

Classification: Instant Recognition with Caffe

In this example we'll classify an image with the bundled CaffeNet model (which is based on the network architecture of Krizhevsky et
al. for ImageNet).

We'll compare CPU and GPU modes and then dig into the model to inspect features and the output.

1. Setup

» First, set up Python, numpy, and matplotlib.

In [1]: | # set up Python environment: numpy for numerical routines, and matplotlib for plotting
import numpy as np
import matplotlib.pyplot as plt

2. Load net and set up input preprocessing
« Set Caffe to CPU mode and load the net from disk.
In [4]: caffe.set mode cpu()

model _def = caffe root + 'models/bvlc_reference caffenet/deploy.prototxt'
model weights = caffe root + 'models/bvlc_reference caffenet/bvlc_reference caffenet.caffemodel'’

net = caffe.Net(model def, # defines the structure of the model
model weights, # contains the trained weights
caffe.TEST) # use test mode (e.g., don't perform dropout)

« Set up input preprocessing. (We'll use Caffe's caffe.io.Transformer to do this, but this step is independent of other
parts of Caffe, so any custom preprocessing code may be used).

Our default CaffeNet is configured to take images in BGR format. Values are expected to start in the range [0, 255] and then
have the mean ImageNet pixel value subtracted from them. In addition, the channel dimension is expected as the first
(outermost) dimension.

As matplotlib will load images with values in the range [0, 1] in RGB format with the channel as the innermost dimension, we
are arranging for the needed transformations here.

In [9]:

In [10]:

Out[1l0]:

load ImageNet labels

labels file = caffe root + 'data/ilsvrcl2/synset words.txt'

if not os.path.exists(labels file):
!../data/ilsvrcl2/get_ilsvrc_aux.sh

labels = np.loadtxt(labels file, str, delimiter='\t')

\rgmax ()] Tabby cat

« "Tabby cat" is correct! But let's also look at other top (but less confident predictions).

print 'output label:',

output label: n0212304] tabby, tabby cat

sort top five predictions from softmax output
top_inds = output prob.argsort()[::-1][:5] # reverse sort and take five largest items

print 'probabilities and labels:' T bb
zip(output_prob[top inds], labels[top_inds]) a_ y Ca_t
probabilities and labejs

[(0.31243637, 'n021230f{5 tabby, tabby cat'), Tlger Cat

(0.2379719, 'n0212315] tiger cat'),

[]
(0.12387239, 'n021240[|5 Egyptian cat'), E t t
(0.10075711, 'n021190f2 red fox, Vulpes vulpes') gyp 1an Ca

(0.070957087, 'n02127fp52 lynx, catamount')]

Lesson 3: Cafte provides
pre-trained networks to
jumpstart learning

e
Today

-Lesson 1: Why now? Big data, big
processing power, robust neural
networks

-[Lesson 2: Neural networks can be
trained on labeled data to classity
avocados

-Lesson 3: Caffe provides pre-trained
networks to jumpstart learning

What do you go from here?

e e
Today

Lesson 1: Why now? Big data, big
processing power, robust neural
networks

«[Lesson 2: Neural networks can be
trained on labeled data to classity
avocados

»Lesson 3: Caffe provides pre-trained
networks to jumpstart learning

Cuda implementations

Theano, Tensorflow, etc

e e
Today

Lesson 1: Why now? Big data, big
processing power, robust neural
networks

-[Lesson 2: Neural networks can be
trained on labeled data to classity
avocados

»Lesson 3: Caffe provides pre-trained
networks to jumpstart learning

Restricted Boltzmann Machines

Recurrent network
Convolutional network

e e
Today

Lesson 1: Why now? Big data, big
processing power, robust neural
networks

«[Lesson 2: Neural networks can be
trained on labeled data to classity
avocados

»Lesson 3: Caffe provides pre-trained
networks to jumpstart learning

Cafte iPython notebooks
Kaggle competitions

Thank you!

irenetrampoline@gmail.com

