
Python Scraping 
Showdown

A speed and accuracy comparison

Katharine Jarmul (@kjam)
PyCon 2014



About the Speaker

● Been using scrapers since 2010, after 
Asheesh inspired me <3

● Pyladies co-founder (#pyladies!!)
● Relocating to Berlin (come say Hi!)



Why Scrape? 
● So many public APIs and JSON-enabled 

endpoints (both exposed and not)
● Well-maintained open-source API Libraries 
● For python, Selenium is still the best (and 

really only reliable) bet for anything loaded 
after the initial page response

● But there are still plenty of sites that don’t 
employ these techniques



What This Talk Will Cover

● LXML vs. BeautifulSoup (with numerous 
pages)

● Finding Elements within Selenium (which 
method is fastest)

● Scrapy: How fast can we go?



A Note (Disclaimer)
● There are many other libraries I originally wanted to 

compare with this, but I found most of them utilized 
similar functionality or actual dependencies on LXML 
and BeautifulSoup (html5lib, scrapy)

● I searched widely for “unscrapable” broken pages. I 
couldn’t find any. If you find one, use BeautifulSoup or 
html5lib with LXML or cElementTree.

● All of my code for this talk is available at my Github 
(kjam)



Comparing LXML and BeautifulSoup

● Top libraries for scraping
● Use distinctly different methods for 

unpacking and parsing HTML
● Both very accurate with the right level of 

detail (as long as the page is not broken)
● LXML utilizes both xpath as well as 

cssselect for identifying elements



Methodology

● The methodology I used was to first write 
accurate scrapers that employed similar 
techniques of parsing. 

● Then I would utilize pstats and cProfile to 
determine the time and function call. I would 
then average these over a number of trials 
(10, 100, 500) to see if there was a 
distinction.



Case Study: Scraping NHL Scores





Case Study: NHL Scores



Case Study: NHL Scores
Library Used Average Function Calls

LXML with XPath 238

LXML with CSS 2770

Beautiful Soup 280881



Case Study: NHL Scores (Accuracy)

In an accuracy review, all of the scripts 
accurately found all of the NHL game scores.



Case Study: Scraping Amazon Deals



Case Study: Amazon Deals



Case Study: Amazon Deals
Library Used Average Function Calls

LXML with XPath 152

LXML with CSS 1762

Beautiful Soup 86674



Case Study: Amazon Deals

In an accuracy review, BeautifulSoup could not 
properly parse the more deals section of the 
page, and therefore I had to modify the BS 
portion of the scraper to find just the top two 
deals. I also could not accurately find the price 
of those deals, so that is omitted for the BS 
portion of the script.



Case Study: Scraping NYT Mobile



Case Study: NYT Mobile



Case Study: NYT Mobile
Library Used Average Function Calls

LXML with XPath 345

LXML with CSS 1799

Beautiful Soup 47733



Case Study: NYT Mobile

In an accuracy review, all of the scripts found 
17 articles on the page, including an empty set 
at the bottom.



LXML with XPath!

● Clear winner!
● But at the end of the day, not by much. :)



Let’s investigate Selenium

● Best library for page interactions and after 
DOM load elements

● There are *many* ways to find elements on 
a page. Which is the fastest?

● I’m going to compare tag_name, 
class_name (css) and XPath.



Selenium: Comparing Element Find



Selenium: A Speed Comparison



Selenium: Function Calls
Library Used Average Function Calls

Find with XPath 11880

Find with CSS 2980

Find with Tag Name 12881



Tag Name: Clear Loser

● CSS and XPath are both great
● Tag is clearly slower and with more calls
● Similarly to web scraping, it’s not *that* huge 

of a difference; so always use what works 
best for your script and something you find 
comfortable and readable.



Let’s investigate Scrapy
● Utilizes LXML XPath for finding elements (or 

items)
● Utilizes Twisted for asynchronous crawling
● Best library by far in terms of crawling or 

spidering the web
● With our speed knowledge, obvious choice for 

parsing a series of pages with speed
● How fast can we go?



Scrapy: LXML Speed with Twisted

● Test: Query Google with pagination for 
search results

● Find items that have title, blurb, link. I didn’t 
worry about writing it somewhere, so that 
would have added time, but I did create 
objects

● I googled “python” (because why not?)



Scrapy Stats



Scrapy: Scraping Google

● Spider was averaging ~ 100 results / 
second!

● Google now hates me
● Scrapy has a lot of different tools to get 

around things like Google captcha block, but 
I didn’t invest the time into playing with it to 
get it working 100% of the time, but please 
feel free to fork and do so! :)



In Conclusion

● LXML using XPath is the clear winner when it 
comes to speed.

● Readability and accuracy (both in your code 
and in the content you scrape) is pretty key as 
well. Your use might vary from these tests but 
keep it in mind.

● If XPath is too confusing or limiting, cssselect 
appears to be a close second in speed.



Any Questions?

● Ask now!
● Ask later:

○ @kjam on twitter
○ /msg kjam on Freenode

● Thanks! :D


