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Welcome!

* More of a computational scientist than a
computer scientist; will be using simulations

to demo & explore algorithm behavior.

* Send me questions/comments @ctitusbrown,

or




“"Features”

* | will be using Python rather than C++, because Python

is easier to read.

* | will be using IPython Notebook to demo.

* |apologize in advance for not covering your favorite

data structure or algorithm.




Outline

The basic idea

Three examples
— Skip lists (a fast key/value store)

— HyperLogLog Counting (counting discrete elements)

— Bloom filters and CountMin Sketches
Folding, spindling, and mutilating DNA sequence

References and further reading




The basic idea

Problem: you have a lot of data to count, track, or otherwise

analyze.

This data is Data of Unusual Size, i.e. you can't just brute force the

analysis.

For example,

— Count the approximate number of distinct elements in a very large

(infinite?) data set
— Optimize queries by using an efficient but approximate prefilter

— Determine the frequency distribution of distinct elements in a very

large data set.




Online and streaming vs. offline

“Large is hard; infinite is much easier.”

* Offline algorithms analyze an entire data set all at

once.

* Online algorithms analyze data serially, one piece at a

time.

* Streaming algorithms are online algorithms that can

be used for very memory & compute limited analysis.




Exact vs random or probabilistic

» Often an approximate answer is sufficient,

esp if you can place bounds on how wrong the

approximation is likely to be.

* Often random algorithms or probabilistic data
structures can be found with good typical

behavior but bad worst case behavior.




For one (stupid) example

You can trim 8 bits off of integers for the purpose of averaging them

import random
X = [ random.randint(0, 2e9) for _ in range(5000) ]

y=[ 1> 8 for i in x ] # eliminate 8 bits of each point
avg x = int(average(x))
avg y = int(average(y)) * 2**8

frac diff = abs(avg x - avg y) / float(avg x)

print avg x, avg y, "%.06f%% wrong" % (frac diff*100)

997701191 997700864 0.000033% wrong




Skip lists

A randomly indexed improvement on linked lists.

Each node can belong to one or more vertical “levels”,
which allow fast search/insertion/deletion — ~O(log(n))

typically!
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Skip lists

A randomly indexed improvement on linked lists.

Very easy to implement; asymptotically good behavior.
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From reddit, “if someone held a gun to my head and asked
me to implement an efficient set/map storage, | would

implement a skip list.”

(Response: “does this happen to you a lot??”) wikipedia




Channel randomness!

* |f you can construct or rely on randomness,

then you can easily get good typical behavior.

* Note, a good hash function is essentially the

same as a good random number generator...




HyperLogLog cardinality counting

* Suppose you have an incoming stream of

many, many “objects”.

* And you want to track how many distinct
items there are, and you want to accumulate

the count of distinct objects over time.




Relevant digression:

* Flip some unknown number of coins. Q: what is
something simple to track that will tell you

roughly how many coins you‘ve flipped?

* A:longest run of HEADs. Longruns are very rare

and are correlated with how many coins you've

flipped.







Cardinality counting with HyperLoglog

* Essentially, use longest run of o-bits observed

in a hash value.

* Use multiple hash functions so that you can

take the average.

* Take harmonic mean + low/high sampling

adjustment => result.







Bloom filters

* A set membership data structure that is

probabilistic but only yields false positives.

* Trivial to implement; hash function is main

cost; extremely memory efficient.







My research applications

Biology is fast becoming a data-driven science.

Cost per Raw Megabase of DNA Sequence

Moore's Law

I ““"““ Il National Human
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genome.gov/sequencingcosts
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Shotgun sequencing analogy:
feeding books into a paper shredder,
digitizing the shreds, and reconstructing

the book.

Although for books, we often know the language and not just the alphabet ©




Shotgun sequencing is --

* Randomly ordered.
* Randomly sampled.

* Too big to efficiently do multiple passes




Shotgun sequencing

Genome (unknown)

Reads
(randomly chosen;
have errors)

"Coverage” is simply the average number of reads that overlap
each true base in genome.

Here, the coverage is ~10 — just draw a line straight down from the top
through all of the reads.




Random sampling => deep sampling needed

Coverage by base Coverage distribution
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Random sampling => deep sampling needed

Coverage by base Coverage distribution
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But this data is massively redundant!! Only need 5x systematic!
All the stuff above the red line is unnecessary!




Streaming algorithm to do so:
digital normalization




Digital normalization

True sequence (unknown)

Reads
(randomly sequenced)




Digital normalization

True sequence (unknown)

Reads
(randomly sequenced)




Digital normalization

True sequence (unknown)

Reads
(randomly sequenced)




Digital normalization

X

Reads
(randomly sequenced)

If next read is from a high
coverage region - discard




Digital normalization

X

Reads
(randomly sequenced)

Redundant reads
(not needed for assembly)




Storing data this way is better than best-
possible information-theoretic storage.
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Use Bloom filter to store graphs

Graphs only gain nodes because of Bloom filter false positives.

Pell et al., PNAS 2012




Some assembly details

This was completely intractable.
Implemented in C++ and Python; “"good practice” (?)
We've changed scaling behavior from data to information.

Practical scaling for ~soil metagenomics is 10x:
— need <1TB of RAM for ~2 TB of data, ~2 weeks.

— Before, ~10TB.

Smaller problems are pretty much solved.

Just beginning to explore threading, multicore, etc. (BIG DATA grant

proposal)

Goal is to scale to 5o Tbp of data (~5-50 TB RAM currently)




Concluding thoughts

Channel randomness.
Embrace streaming.
Live with minor uncertainty.

Don’t be afraid to discard data.

(Also, I'm an open source hacker who can confer PhDs, in

exchange for long years of low pay living in Michigan.

E-mail me! And don’t talk to Brett Cannon about PhDs first.)
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