Awesome Big Data Algorithms

```
DEFINE FASTBOGOSORT(LIST):
    // AN OPTIMIZED BOGOSORT
    // RUNS IN O(NLOGN)
    FOR N FROM 1 TO LOG(LENGTH(LIST)):
        SHUFFLE (LIST):
        IF ISSORTED (LIST):
            RETURN LIST
    RETURN "KERNEL PAGE FAULT (ERROR CODE: 2)"
```

Awesome Big Data Algorithms

C. Titus Brown

ctb@msu.edu

Asst Professor, Michigan State University

(Microbiology, Computer Science, and BEACON)

Welcome!

 More of a computational scientist than a computer scientist; will be using simulations to demo & explore algorithm behavior.

 Send me questions/comments @ctitusbrown, or ctb@msu.edu.

"Features"

 I will be using Python rather than C++, because Python is easier to read.

I will be using IPython Notebook to demo.

• I apologize in advance for not covering *your* favorite data structure or algorithm.

Outline

- The basic idea
- Three examples
 - Skip lists (a fast key/value store)
 - HyperLogLog Counting (counting discrete elements)
 - Bloom filters and CountMin Sketches
- Folding, spindling, and mutilating DNA sequence
- References and further reading

The basic idea

- Problem: you have a **lot** of data to count, track, or otherwise analyze.
- This data is Data of Unusual Size, i.e. you can't just brute force the analysis.
- For example,
 - Count the approximate number of distinct elements in a very large (infinite?) data set
 - Optimize queries by using an efficient but approximate prefilter
 - Determine the frequency distribution of distinct elements in a very large data set.

Online and streaming vs. offline

"Large is hard; infinite is much easier."

- Offline algorithms analyze an entire data set all at once.
- Online algorithms analyze data serially, one piece at a time.
- Streaming algorithms are online algorithms that can be used for very memory & compute limited analysis.

Exact vs random or probabilistic

- Often an approximate answer is sufficient,
 esp if you can place bounds on how wrong the approximation is likely to be.
- Often random algorithms or probabilistic data structures can be found with good *typical* behavior but bad *worst case* behavior.

For one (stupid) example

You can trim 8 bits off of integers for the purpose of averaging them

```
In [26]: import random
    x = [ random.randint(0, 2e9) for _ in range(5000) ]
    y = [ i >> 8 for i in x ] # eliminate 8 bits of each point

In [28]: avg_x = int(average(x))
    avg_y = int(average(y)) * 2**8
    frac_diff = abs(avg_x - avg_y) / float(avg_x)

    print avg_x, avg_y, "%.06f%% wrong" % (frac_diff*100)
    997701191 997700864 0.000033% wrong
```

Skip lists

A randomly indexed improvement on linked lists.

Each node can belong to one or more vertical "levels", which allow fast search/insertion/deletion – ~O(log(n)) typically!

Skip lists

A randomly indexed improvement on linked lists.

Very easy to implement; asymptotically good behavior.

From reddit, "if someone held a gun to my head and asked me to implement an efficient set/map storage, I would implement a skip list."

(Response: "does this happen to you a lot??")

wikipedia

Channel randomness!

• If you can construct or rely on randomness, then you can easily get good typical behavior.

• Note, a *good hash function* is essentially the same as a good random number generator...

HyperLogLog cardinality counting

- Suppose you have an incoming stream of many, many "objects".
- And you want to track how many distinct items there are, and you want to accumulate the count of distinct objects over time.

Relevant digression:

 Flip some unknown number of coins. Q: what is something simple to track that will tell you roughly how many coins you've flipped?

 A: longest run of HEADs. Long runs are very rare and are correlated with how many coins you've flipped.

Cardinality counting with HyperLogLog

- Essentially, use longest run of o-bits observed in a hash value.
- Use multiple hash functions so that you can take the average.
- Take harmonic mean + low/high sampling adjustment => result.

Bloom filters

- A set membership data structure that is probabilistic but only yields false positives.
- Trivial to implement; hash function is main cost; extremely memory efficient.

My research applications

Biology is fast becoming a data-driven science.

http://www.genome.gov/sequencingcosts/

Shotgun sequencing analogy: feeding books into a paper shredder, digitizing the shreds, and reconstructing the book.

Although for books, we often know the language and not just the alphabet $\ \odot$

Shotgun sequencing is ---

- Randomly ordered.
- Randomly sampled.
- Too big to efficiently do multiple passes

Shotgun sequencing

"Coverage" is simply the average number of reads that overlap each true base in genome.

Here, the coverage is ~10 – just draw a line straight down from the top through all of the reads.

Random sampling => deep sampling needed

Typically 10-100x needed for robust recovery (300 Gbp for human)

Random sampling => deep sampling needed

Typically 10-100x needed for robust recovery (300 Gbp for human)

But this data is massively redundant!! Only need 5x systematic!

All the stuff above the red line is unnecessary!

Streaming algorithm to do so: digital normalization

True sequence (unknown)

Reads (randomly sequenced)

Reads (randomly sequenced)

Storing data this way is better than bestpossible information-theoretic storage.

Use Bloom filter to store graphs

Graphs only gain nodes because of Bloom filter false positives.

Some assembly details

- This was completely intractable.
- Implemented in C++ and Python; "good practice" (?)
- We've changed scaling behavior from data to information.
- Practical scaling for ~soil metagenomics is 10x:
 - need < 1 TB of RAM for ~2 TB of data, ~2 weeks.
 - Before, ~1oTB.
- Smaller problems are pretty much solved.
- Just beginning to explore threading, multicore, etc. (BIG DATA grant proposal)
- Goal is to scale to 50 Tbp of data (~5-50 TB RAM currently)

Concluding thoughts

- Channel randomness.
- Embrace streaming.
- Live with minor uncertainty.
- Don't be afraid to discard data.

(Also, I'm an open source hacker who can confer PhDs, in exchange for long years of low pay living in Michigan.

E-mail me! And don't talk to Brett Cannon about PhDs first.)

References

SkipLists: Wikipedia, and John Shipman's code:

http://infohost.nmt.edu/tcc/help/lang/python/examples/pyskip/pyskip.pdf

HyperLogLog: Aggregate Knowledge's blog,

http://blog.aggregateknowledge.com/2012/10/25/sketch-of-the-day-hyperloglog-cornerstone-of-a-big-data-infrastructure/

And: https://github.com/svpcom/hyperloglog

Bloom Filters: Wikipedia

Our work: http://ivory.idyll.org/blog/ and http://ged.msu.edu/interests.html ctb@msu.edu