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Part I
State of the Web Address
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State of the Web

Traditional HTTP is:

stateless

client-driven
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State[less] of the Web

HTTP is designed around a series of 
mostly-independent requests and 
responses.

Not completely independent: cookies, 
for instance, offer some state 
storage.

Contrast with: online multiplayer 
gaming.
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Client-Driven
HTTP is, at a fundamental level, 
client-driven.

The client asks for something, which 
starts the process. The server then 
complies with the request (or 
doesn’t) and returns a response.

Important takeaway: in traditional 
HTTP, the client is always the 
instigator.
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AJAX: Client-Driven

The AJAX model is still built around 
this fundamental order.

At its most basic, polling a server 
with AJAX is a client asking for 
material on a cadence.

“Are we there yet? Are we there yet?”
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State of the Web

We’ve been working around these 
restrictions for a decade or more.

Flash, AJAX, Comet, long-polling -- 
these are all ways of disguising or 
circumventing this fundamental 
paradigm.

*cue announcer voice* “And now...”
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socket.io
socket.io is a JavaScript client and 
server library.

socket.io is a solution to the “last 
mile problem”: getting information to 
browsers without the browser having 
to repeatedly ask for it.

socket.io is the newest, browser-
compatible way to maintain a stateful 
connection between browser and 
server.

lukesn.me/py2013-socketio @lukesneeringer
Friday, March 15, 13



But wait, there’s Python!

The socket.io server is also written 
in JavaScript (Node.js).

There is also a Python socket.io 
server built on top of gevent. This 
is our ultimate focus.
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Part II
The Client
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Getting the Client

Just download it from socket.io

...right?
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Getting the Client

Sadly, you can’t download the client 
directly from the socket.io website.

I download it from the examples found 
in the gevent-socketio repository on 
GitHub.

github.com/abourget/gevent-socketio

My tutorial repo also has it.
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The Client
The socket.io client is really about 
doing pretty basic things:

Opening and holding a connection 
at the server.

Sending data to the server.

Listening for certain data from 
the server.

In socket.io, these are spelled 
`connect`, `emit`, and `on`.
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The Client: connect

If the browser supports it, socket.io 
uses websocket to open and hold a 
connection to the server.

Not all browsers support websocket, 
so socket.io will intelligently fall 
back on the best possible way to get 
(or mimic) the desired behavior: 
websocket, Flash, AJAX...
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The Client: connect

Namespaces are a SocketIO term. It’s 
basically SocketIO’s internal URI 
routing.

Except not, because it doesn’t map to 
true URIs at all. It’s a dirty lie.

We’ll come back to this.
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The Client: Events
The `emit` and `on` methods are about 
sending and receiving events.

`emit` sends, `on` listens for 
receipt.

Events comprise:

the event name (string)

zero or more pieces of data (JSON)
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The Client: Events

Receiving events just involves 
setting up listeners: “I want to know 
when X happens.”

The server can (and often does) send 
more events than the client requests.
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The Client: Events

`on` waits for an event to come in. 
When an event with the proper name 
does come in, the function runs.

N.B. The server emits “connect” 
automatically (with no data).
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The Client: Events

`emit` sends data back. This is a 
“hello” event with a JSON string (my 
name) as an argument.

We’ll come back to that server-side.
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Part III
The Server
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What’s Available

SocketIO was originally designed 
around using Node.js as the server 
platform.

In fact, the SocketIO library assumes 
that everyone does this.

Of course, this is PyCon.
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What’s Available

Using gevent and the gevent-socketio 
library with Python offers some 
advantages over JavaScript:

Much cleaner debugging.

More straightforward code in 
general. No need to nest anonymous 
functions ad infinitum.
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The Server

We’re using the gevent-socketio 
library, available on PyPI.

For this example, we’ll integrate it 
with Django. Any Python framework 
will work; it’s not Django specific.

lukesn.me/py2013-socketio @lukesneeringer
Friday, March 15, 13



The Server: Making it Work
Basic Steps:

Install the SocketIO server.
(`pip install gevent-socketio`)

Run the SocketIO server.

Route requests at one endpoint 
(usually /socket.io/) to the 
SocketIO server, and everything 
else to the traditional web 
server.
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The Server: Making it Work

Running the SocketIO server is 
actually pretty straightforward.

Since environments and frameworks and 
such differ, you’ll probably have to 
do some scripting:
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The Server: Making it Work
`wsgi_application` is the handler. 
It’s the same object that Django and 
most (all?) other Python web 
frameworks use.

`resource` is the actual REST URI.

`policy_server` is whether to run the 
Flash policy server.

Note: The SocketIO server can handle 
“normal” requests. Useful for dev.
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The Server: URI Routing
Assuming the Django-bundled WSGI 
application is used, we now go 
through Django’s usual routing 
process:
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The Server: The URI

A note: The URI here is `socket.io/`.

This maps to the `resource` argument 
we looked at earlier.

It’s easiest to leave this at the 
default. You can change it, but it 
has to be done everywhere (e.g. also 
in `io.connect`), and it’s a pain.
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The Server: The View

A boilerplate Django view moves us 
off to SocketIO’s internal routing.

SocketIO’s rough equivalent to Django 
views are called namespaces.

Each namespace is a class, and maps 
to something that looks like a URI 
(but isn’t; it’s a lie).
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The Server: Namespaces
The third argument to socketio_manage 
is `request`. Whatever is sent to 
that will be available to all 
namespaces at `self.request`.

This is not Django-specific. It works 
with any framework.

The namespaces’ internals don’t use 
`self.request` at all, and it can be 
omitted if you don’t need it.
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The Server: Namespaces
Namespaces are, at their basic, a 
collection of `on_%s` methods that 
are called upon receipt of events:
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The Server: Notes
Data passed back and forth doesn’t 
have to be strings. Anything that 
JSON understands works.

so basically: str, int, float, 
bool, list, dict

Also, more than one argument can be 
used. Arguments retain positional 
order.

JavaScript does not support kwargs.
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The Last Mile
Once a SocketIO connection is in 
place, your namespace can emit an 
event that the client will pick up 
immediately.

The on-methods only give us 
functionality we already have (but 
faster).

More interesting problem: How do we 
send data without being asked?
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The Last Mile

You’re holding a connection now, so 
there are multiple ways to solve this 
problem.

An easy one: Redis.

Implements pub/sub.

Easy to add to a namespace.
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The Last Mile
Subscribe to Redis broadcasts in your 
namespace’s on methods

redis_pubsub.subscribe([
    “channel”,
])

Events will be sent down to the 
client automatically while the 
connection holds.
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The Rest of It

Not everything can be covered here.

Want to know more? Clone my repo:

github.com/lukesneeringer/
pycon2013_socketio/

Thanks for attending!
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Contact

Luke Sneeringer

E-mail: luke@sneeringer.com

Twitter: @lukesneeringer

Example repository:

github.com/lukesneeringer/
pycon2013_socketio/
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