
Make more responsive
web applications with

SocketIO and gevent
Luke Sneeringer
@lukesneeringer

Friday, March 15, 13

Part I
State of the Web Address

lukesn.me/py2013-socketio @lukesneeringer
Friday, March 15, 13

State of the Web

Traditional HTTP is:

stateless

client-driven

lukesn.me/py2013-socketio @lukesneeringer
Friday, March 15, 13

State[less] of the Web

HTTP is designed around a series of
mostly-independent requests and
responses.

Not completely independent: cookies,
for instance, offer some state
storage.

Contrast with: online multiplayer
gaming.

lukesn.me/py2013-socketio @lukesneeringer
Friday, March 15, 13

Friday, March 15, 13

Friday, March 15, 13

Client-Driven
HTTP is, at a fundamental level,
client-driven.

The client asks for something, which
starts the process. The server then
complies with the request (or
doesn’t) and returns a response.

Important takeaway: in traditional
HTTP, the client is always the
instigator.

lukesn.me/py2013-socketio @lukesneeringer
Friday, March 15, 13

AJAX: Client-Driven

The AJAX model is still built around
this fundamental order.

At its most basic, polling a server
with AJAX is a client asking for
material on a cadence.

“Are we there yet? Are we there yet?”

lukesn.me/py2013-socketio @lukesneeringer
Friday, March 15, 13

Friday, March 15, 13

State of the Web

We’ve been working around these
restrictions for a decade or more.

Flash, AJAX, Comet, long-polling --
these are all ways of disguising or
circumventing this fundamental
paradigm.

cue announcer voice “And now...”

lukesn.me/py2013-socketio @lukesneeringer
Friday, March 15, 13

socket.io
socket.io is a JavaScript client and
server library.

socket.io is a solution to the “last
mile problem”: getting information to
browsers without the browser having
to repeatedly ask for it.

socket.io is the newest, browser-
compatible way to maintain a stateful
connection between browser and
server.

lukesn.me/py2013-socketio @lukesneeringer
Friday, March 15, 13

But wait, there’s Python!

The socket.io server is also written
in JavaScript (Node.js).

There is also a Python socket.io
server built on top of gevent. This
is our ultimate focus.

lukesn.me/py2013-socketio @lukesneeringer
Friday, March 15, 13

Part II
The Client

lukesn.me/py2013-socketio @lukesneeringer
Friday, March 15, 13

Getting the Client

Just download it from socket.io

...right?

Friday, March 15, 13

Getting the Client

Sadly, you can’t download the client
directly from the socket.io website.

I download it from the examples found
in the gevent-socketio repository on
GitHub.

github.com/abourget/gevent-socketio

My tutorial repo also has it.

lukesn.me/py2013-socketio @lukesneeringer
Friday, March 15, 13

The Client
The socket.io client is really about
doing pretty basic things:

Opening and holding a connection
at the server.

Sending data to the server.

Listening for certain data from
the server.

In socket.io, these are spelled
`connect`, `emit`, and `on`.

lukesn.me/py2013-socketio @lukesneeringer
Friday, March 15, 13

The Client: connect

If the browser supports it, socket.io
uses websocket to open and hold a
connection to the server.

Not all browsers support websocket,
so socket.io will intelligently fall
back on the best possible way to get
(or mimic) the desired behavior:
websocket, Flash, AJAX...

lukesn.me/py2013-socketio @lukesneeringer
Friday, March 15, 13

The Client: connect

Namespaces are a SocketIO term. It’s
basically SocketIO’s internal URI
routing.

Except not, because it doesn’t map to
true URIs at all. It’s a dirty lie.

We’ll come back to this.

lukesn.me/py2013-socketio @lukesneeringer
Friday, March 15, 13

The Client: Events
The `emit` and `on` methods are about
sending and receiving events.

`emit` sends, `on` listens for
receipt.

Events comprise:

the event name (string)

zero or more pieces of data (JSON)

lukesn.me/py2013-socketio @lukesneeringer
Friday, March 15, 13

The Client: Events

Receiving events just involves
setting up listeners: “I want to know
when X happens.”

The server can (and often does) send
more events than the client requests.

lukesn.me/py2013-socketio @lukesneeringer
Friday, March 15, 13

The Client: Events

`on` waits for an event to come in.
When an event with the proper name
does come in, the function runs.

N.B. The server emits “connect”
automatically (with no data).

lukesn.me/py2013-socketio @lukesneeringer
Friday, March 15, 13

The Client: Events

`emit` sends data back. This is a
“hello” event with a JSON string (my
name) as an argument.

We’ll come back to that server-side.

lukesn.me/py2013-socketio @lukesneeringer
Friday, March 15, 13

Part III
The Server

lukesn.me/py2013-socketio @lukesneeringer
Friday, March 15, 13

What’s Available

SocketIO was originally designed
around using Node.js as the server
platform.

In fact, the SocketIO library assumes
that everyone does this.

Of course, this is PyCon.

lukesn.me/py2013-socketio @lukesneeringer
Friday, March 15, 13

What’s Available

Using gevent and the gevent-socketio
library with Python offers some
advantages over JavaScript:

Much cleaner debugging.

More straightforward code in
general. No need to nest anonymous
functions ad infinitum.

lukesn.me/py2013-socketio @lukesneeringer
Friday, March 15, 13

The Server

We’re using the gevent-socketio
library, available on PyPI.

For this example, we’ll integrate it
with Django. Any Python framework
will work; it’s not Django specific.

lukesn.me/py2013-socketio @lukesneeringer
Friday, March 15, 13

The Server: Making it Work
Basic Steps:

Install the SocketIO server.
(`pip install gevent-socketio`)

Run the SocketIO server.

Route requests at one endpoint
(usually /socket.io/) to the
SocketIO server, and everything
else to the traditional web
server.

lukesn.me/py2013-socketio @lukesneeringer
Friday, March 15, 13

The Server: Making it Work

Running the SocketIO server is
actually pretty straightforward.

Since environments and frameworks and
such differ, you’ll probably have to
do some scripting:

lukesn.me/py2013-socketio @lukesneeringer
Friday, March 15, 13

Friday, March 15, 13

The Server: Making it Work
`wsgi_application` is the handler.
It’s the same object that Django and
most (all?) other Python web
frameworks use.

`resource` is the actual REST URI.

`policy_server` is whether to run the
Flash policy server.

Note: The SocketIO server can handle
“normal” requests. Useful for dev.

lukesn.me/py2013-socketio @lukesneeringer
Friday, March 15, 13

The Server: URI Routing
Assuming the Django-bundled WSGI
application is used, we now go
through Django’s usual routing
process:

Friday, March 15, 13

The Server: The URI

A note: The URI here is `socket.io/`.

This maps to the `resource` argument
we looked at earlier.

It’s easiest to leave this at the
default. You can change it, but it
has to be done everywhere (e.g. also
in `io.connect`), and it’s a pain.

lukesn.me/py2013-socketio @lukesneeringer
Friday, March 15, 13

The Server: The View

A boilerplate Django view moves us
off to SocketIO’s internal routing.

SocketIO’s rough equivalent to Django
views are called namespaces.

Each namespace is a class, and maps
to something that looks like a URI
(but isn’t; it’s a lie).

lukesn.me/py2013-socketio @lukesneeringer
Friday, March 15, 13

Friday, March 15, 13

The Server: Namespaces
The third argument to socketio_manage
is `request`. Whatever is sent to
that will be available to all
namespaces at `self.request`.

This is not Django-specific. It works
with any framework.

The namespaces’ internals don’t use
`self.request` at all, and it can be
omitted if you don’t need it.

lukesn.me/py2013-socketio @lukesneeringer
Friday, March 15, 13

The Server: Namespaces
Namespaces are, at their basic, a
collection of `on_%s` methods that
are called upon receipt of events:

Friday, March 15, 13

The Server: Notes
Data passed back and forth doesn’t
have to be strings. Anything that
JSON understands works.

so basically: str, int, float,
bool, list, dict

Also, more than one argument can be
used. Arguments retain positional
order.

JavaScript does not support kwargs.
lukesn.me/py2013-socketio @lukesneeringer

Friday, March 15, 13

The Last Mile
Once a SocketIO connection is in
place, your namespace can emit an
event that the client will pick up
immediately.

The on-methods only give us
functionality we already have (but
faster).

More interesting problem: How do we
send data without being asked?

lukesn.me/py2013-socketio @lukesneeringer
Friday, March 15, 13

The Last Mile

You’re holding a connection now, so
there are multiple ways to solve this
problem.

An easy one: Redis.

Implements pub/sub.

Easy to add to a namespace.

lukesn.me/py2013-socketio @lukesneeringer
Friday, March 15, 13

Friday, March 15, 13

The Last Mile
Subscribe to Redis broadcasts in your
namespace’s on methods

redis_pubsub.subscribe([
 “channel”,
])

Events will be sent down to the
client automatically while the
connection holds.

lukesn.me/py2013-socketio @lukesneeringer
Friday, March 15, 13

The Rest of It

Not everything can be covered here.

Want to know more? Clone my repo:

github.com/lukesneeringer/
pycon2013_socketio/

Thanks for attending!

lukesn.me/py2013-socketio @lukesneeringer
Friday, March 15, 13

Contact

Luke Sneeringer

E-mail: luke@sneeringer.com

Twitter: @lukesneeringer

Example repository:

github.com/lukesneeringer/
pycon2013_socketio/

Friday, March 15, 13

