
LOCATION
LOCATION
LOCATION
JULIA GRACE

@JEWELIA

WHOAMI
•  @jewelia

•  1st Engineering hire at Tindie

•  tindie.com
•  “Etsy for Hardware Hackers”

•  BS & MS in Computer Science

•  Veteran of a few startups & IBM Research

•  This talk goes over work I did in Fall 2012 at
WeddingLovely.

WHAT YOU’LL GET OUT
OF THIS TALK
•  We’ll walk through how to encode, store and

search geospatial data.

•  Think: input box that allow users to input
any geographic data (e.g. city, state, zip,
country).

•  Queries for data nearby or within a radius.

•  You see this all over the web.

•  Example: Yelp

OUR STACK
Python 2.7
Django 1.4.3

PostgreSQL 9.2

BEFORE MOVING TO
SPATIAL DB…
•  Hard coded list of strings in a list shown in a dropdown.
•  Cheap, easy and works most of the time.

AFTER MOVING TO
SPATIAL DB…
•  “Omnibox” that can handle (almost) any input.

BE SMART (LISTS AIN’T
ALL BAD)
•  Not every application needs a spatial database

and the ability to do distance lookups.

•  Did I mention that lists are:

•  Fast to implement.
•  Need less infrastructure.
•  Might get you 75% (or even 90%) of the way

there.

…BUT LISTS WERE NOT
IDEAL FOR OUR USER-
FACING SEARCH
•  Good short term solution. Bad long term solution
•  Alphabetically distant cities might be geographically

close.

Lake Tahoe and Sacramento
are “close” enough that search
results should contain objects
in both locations.

… JUST TO NOTE
•  I had no idea how to do this when I started.

•  No extensive experience with spatial
databases or geocoding.

•  Hopefully the lessons I learned will save you
time/energy/cash money.

…TO THE SPATIAL DB
AND BEYOND!
Process of converting an existing Django
application (or building a new application) to use
GeoDjango and handle location input:

(1) Database

(2) Application layer

(3) Front-end

(4) Bonus Round!

(1) DATABASE: OPTIONS
1.  No spatial database and do the math ourselves.

•  Store lat/long at decimals and mathematically compute distance
between them using Haversine formula:

2.  Use a spatial database (e.g. PostGIS) and compute distances at the DB
level (but then we might as well just be writing straight SQL):

3.  Spatial database + GeoDjango.

•  GeoDjango = Django’s API for accessing geographic data and doing
distance lookups (among other calculations) on that data.

Haversine formula in
Mathematica

(1) DATABASE: INSTALL
POSTGRESQL 9.2
•  We were running PostgreSQL 9.1.3 on it’s on

Ubuntu 12.04 LTS (precise).

•  Decided to upgrade to 9.2 after struggling with
9.1.3

•  At the time (10/2012), 9.2 was not available via
aptitude or apt-get.

•  Reference:
http://askubuntu.com/questions/186610/how-
do-i-upgrade-to-postgres-9-2

(1) DATABASE: INSTALL
SPATIAL LIBRARIES
•  List of needed libraries:

https://docs.djangoproject.com/en/dev/
ref/contrib/gis/install/geolibs/

•  Versions matter! When using PostgreSQL
9.2 you must use (in this order):
•  GEOS 3.3.3+
•  GDAL 1.9+
•  PostGIS 2.0+

•  Don’t install PostGIS before GEOS or face
certain doom.

•  Complete list of versions that play well:
http://trac.osgeo.org/postgis/wiki/
UsersWikiPostgreSQLPostGIS

(1) DATABASE: INSTALL
PROPER DEPENDENCIES FOR
YOUR OS
Install PostGIS dependencies:

Build GEOS 3.3.x:

Build PostGIS:

Reference (with detailed explanations I can’t fit here):
http://trac.osgeo.org/postgis/wiki/UsersWikiPostGIS20Ubuntu1204src

(1) DATABASE: LOAD UP
THOSE SPATIAL LIBS
1.  Start PostgreSQL and create a DB (if you have an existing

DB you’d like to use, you can skip this step).

2.  Create the spatial database template:

3.  Load PostGIS SQL routines:

4.  Enable users to alter spatial tables:

(1) DATABASE: STACK
SCRIPT TO INSTALL
POSTGRES 9.2 + SPATIAL DB
If you’re on Linode, here’s a stack script I wrote:
http://www.linode.com/stackscripts/view/?StackScriptID=5425

(sorry for the eye test)

(1) DATABASE: DOES YOUR
SPATIAL DB WORK?
•  How to verify PostGIS actually works:

•  I did not install the raster libraries, so you can
ignore the warnings that may appear.

HOOK UP POSTGRES +
POSTGIS TO DJANGO
•  PostGIS 2.0 doesn’t play well with Django:

https://code.djangoproject.com/ticket/16455

•  Modify the PostGIS DB adapter

•  Copy postgis/ directory from
https://github.com/django/django/tree/master/
django/contrib/gis/db/backends/postgis to your local
development directory.

•  I copied it into a lib/postgis/ in my Django project.
•  Update settings.py (next slide has example) to point

to the new DB adapter.
•  Make these changes: https://code.djangoproject.com/

attachment/ticket/16455/16455-r17171-v4.patch

HOOK UP POSTGRES +
POSTGIS TO DJANGO
•  Example of settings.py pointing to local copy of

the postgis DB adapter:

GEOGRAPHY INTERLUDE
•  Distance between 2 points on a plane is not

computationally intensive to calculate.

•  ..but the Earth isn’t flat and doing geometric
calculations require more complex mathematics.

(2) APPLICATION LAYER:
FUN BEGINS
•  Modifications to your existing models:

!

geography=true uses spherical representation of the Earth instead of plane (flat)
representation. For short distances plane will work (and is faster to compute) but for longer
distances you should account for the curvature of the Earth or else you’re distances will
inaccurate.
More info: https://docs.djangoproject.com/en/dev/ref/contrib/gis/model-api/#geography

(2) APPLICATION LAYER:
POINT FIELD EXAMPLE
•  Point = longitude/latitude representation of a point

on Earth.

•  Creating and saving a Point in Django ORM:

INTERLUDE: WHAT IS
GEOCODING
•  Process of translating data (e.g. strings such as

“94040” or “Santa Clara”) and finding the
associated geographic coordinates such as
latitude/longitude.

•  Many public and free APIs to do this for you.

•  One of most popular is Google’s Geocoding API:
https://developers.google.com/maps/
documentation/geocoding/

INTERLUDE: WHAT IS
GEOCODING
Type this into your browser:

BOOM!
•  Response: a lot of JSON data!

•  You might not need all of it; I used:

•  formatted_address
•  location lat/long

•  If you are going to be spending a lot of
time reading JSON in a web browser,
here are some plugins to make your life
easier:

•  https://twitter.com/jewelia/status/
257997860451258369

(2) APPLICATION LAYER:
NEED TO GET LAT/LONG
FOR LEGACY STRING DATA?

•  What if you need to geocode legacy data (e.g.
you stored “San Francisco, CA, USA)?

•  Simple example using Google’s Geocoding
API:
https://developers.google.com/maps/
documentation/geocoding/

!

(2) APPLICATION LAYER:
NEED TO GET LAT/LONG
FOR LEGACY STRING DATA?

TIP: POINTS ARE STORED
AS GEOMETRIES

WTF? Where are the lat/long values?

More fancy PostGIS functions for your pleasure:
http://postgis.refractions.net/documentation/
manual-1.5/ch08.html#PostGI

(2) APPLICATION LAYER:
MAKING SPATIAL QUERIES

distance_lte = distance less than equal
distance_gte = distance greater than equal
Full list of lookups:
https://docs.djangoproject.com/en/dev/ref/contrib/gis/db-api/
#spatial-lookup-compatibility

•  Query for all objects within a specified radius.
•  Great for situations where having no results is okay

(if you have no data within the radius specified).

(2) APPLICATION LAYER:
MAKING SPATIAL QUERIES
•  Query for all objects sorted by distance from a lat/long.

•  Useful for times when you don’t know if querying for objects
within a radius (e.g. 25 miles) will return any results.

•  This guarantees you will have results (if you have data :)

(3) FRONT END:
GEOCODING USER INPUT
•  Two options: Geocode client side or server side

•  Client side

•  You have to write JS.
•  Many free geocoding APIs (like Google) rate limit you

by IP address, so geocoding client side will likely mean
you won’t get rate limited if you have a lot of different
users.

•  The terms of service of the Google Geocoding API
require you to display a Google Map.

•  Server side

•  You get to write Python (this is PyCon…)
•  You probably will be rate limited.

YET ANOTHER
INTERLUDE
•  My next startup idea
•  Pre-order yours today!

(3) FRONT END: CLIENT SIDE
GEOCODING USER INPUT
•  Forms.py

•  HTML template:

HiddenInput because we are going to
query for this data client side via Google
Geocoding API.

(3) FRONT END:
GEOCODING USER INPUT
•  Example based on

https://developers.google.com/maps/documentation/javascript/geocoding

•  Geocode client side, append the lat/long data to the
form before submission:

(3) FRONT END:
GEOCODING USER INPUT
•  Views.py

FINAL INTERLUDE
•  Fancy things with middleware we tried at Tindie.

•  Tindie has over 500 products from 200 sellers
worldwide.

•  Shipping rates can vary significantly based on
country.

•  Auto-detect country to show shipping rates?

Robots shipped all around the
world!

BONUS: AUTO DETECT
LOCATION THROUGH
MIDDLEWARE
•  There are services that map IP address to

country.

•  We used http://ipinfodb.com/

Pretty darn accurate….

BONUS: AUTO DETECT
LOCATION THROUGH
MIDDLEWARE
•  Add a Django Middleware to set the location in the session:

•  If no location can be determined, default to US:

THANK YOU
This talk would not have been possible without
feedback and input from these awesome people:

•  Tracy Osborn

•  Andrey Petrov

•  Kenneth Love

•  Lynn Root

…and PyLadies!

QUESTIONS?
•  You can always find me at

•  @jewelia
•  jewelia@gmail.com

•  I also have stickers, lots of stickers

