
matt@whoosh.ca

Whoosh
An open-source pure-Python search library

Friday, 15 March, 13

mailto:matt@whoosh.ca
mailto:matt@whoosh.ca

Agenda

• Who am I?

• What is Whoosh?

• How does a inverted index work?

• Demo

• Advanced features

• What’s next?

Friday, 15 March, 13

Matt Chaput

• Technical writer, Graphic designer, and UI
designer

• Self-taught programmer -
BASIC, Logo, Scheme, Smalltalk, JavaScript,
Java, Python

• Information retrieval dilettante

Friday, 15 March, 13

Side Effects Software

• Houdini, a high-end 3D animation and special
effects package

• Used in film, games, and commercials

• Twice recognized by the Academy of Motion
Pictures, Arts and Sciences

• Uses Python as its scripting language

Friday, 15 March, 13

Before Whoosh

• Java Lucene in background process

• Customers HATED Java requirement

• Shipping Java was a big hassle with Sun

Friday, 15 March, 13

Why write a pure
Python search library?

• Compiled libraries: installation problems and
crashes, cross-platform issues

• Whoosh works where Python works

• I got 99 problems but make install ain’t one

Friday, 15 March, 13

What happened was...

• Wrote a search library for use in Houdini
help system

• Would this be useful to anyone else?

• Open sourced in 2007

• Front page of Hacker News

• Whoosh was pretty slow

• Now it’s... much less slow ;)

Friday, 15 March, 13

Who uses Whoosh?

• Houdini online help

• MoinMoin

• Django-Haystack

• Lots of users on Bitbucket and mailing list

Friday, 15 March, 13

The basics

• Programming library

• Toolkit for building your own search
engine

• Not a web crawler (bring your own text)

• Thread and multiprocess safe

• Two-clause BSD license (GPL compatible)

• Python 2.5+, Python 3 compatible

Friday, 15 March, 13

Features
• Fields

• Text analysis

• Spell checker

• “More like this”

• Pluggable components

• Powerful queries

• Term Vectors

• Faceting and sorting

• Highlighted snippets

• Nested searching

• Efficient numeric and
date fields

• Documentation & tests

Friday, 15 March, 13

Inverted Index

Friday, 15 March, 13

Indexing

• Text analysis

• Translate text into terms

• List of all postings in all documents

• External merge sort

• Map of terms to posting lists

Friday, 15 March, 13

Searching

• Parse user query

• Run search

• Grouping/sorting

• Paging

• Spelling corrections

• Highlighted snippets

• “More like this”

Friday, 15 March, 13

Defining the schema
class MySchema(fields.SchemaClass):
 title = fields.TEXT(stored=True, sortable=True)
 content = fields.TEXT(spelling=True)
 path = fields.STORED
 modified = fields.DATETIME(stored=True, sortable=True)

or

myschema = fields.Schema(
 title=fields.TEXT(stored=True, sortable=True),
 content=fields.TEXT(spelling=True),
 path=fields.STORED,
 modified=fields.DATETIME(stored=True, sortable=True),
)

Friday, 15 March, 13

Indexing
from whoosh import fields, index

class MySchema(fields.SchemaClass):
 title = fields.TEXT(stored=True, sortable=True)
 content = fields.TEXT
 indexed_on = fields.DATETIME(stored=True, sortable=True)
 summary = fields.STORED

ix = index.create_in(“indexdir”)
with ix,writer() as w:
 w.add_document(title=”PyCon 2013”,
 content=myfile.read(),
 indexed_on=datetime.now(),
 summary=”Conference report.”)

Friday, 15 March, 13

Searching
from whoosh import index, qparser

ix = index.open_dir(“indexdir”)

qp = qparser.QueryParser(“content”, ix.schema)
q = qp.parse(“guido”)

with ix.searcher() as s:
 results = s.search(q)
 for hit in results:
 print(hit[“title”])

Friday, 15 March, 13

Query types
• Term

• And, Or, Not

• DisjunctionMax

• Nested

• Phrase

• Near, Contains, etc.

• Range

• Prefix

• Wildcard

• Regex

• Fuzzy

Friday, 15 March, 13

Demo

Friday, 15 March, 13

Advanced features

• Multiprocessing for faster indexing

• Sorting/grouping

• Custom collectors
(e.g. which queries matched?)

• Hierarchical searching

• Custom column types

• Codecs

Friday, 15 March, 13

Pure Python advantages

• Fun!

• No compilation - just works

• Fast iteration as you design the index

• Start up an interpreter and inspect the
index, try queries, etc.

• Easy integration with other Python code

Friday, 15 March, 13

Pain points

• Performance

• Try to touch as much C as possible

• Do some silly things (full binary numbers,
cPickle) because they’re fast

• Python 3 transition (u, bytes, str)

• Dynamic typing in the large

Friday, 15 March, 13

Future directions

• Explore manipulating byte array slices
instead of strings

• Keep more in RAM

• Experimental codecs

• More choice between fast and compact
index

• Split out sub-systems

Friday, 15 March, 13

Interesting code
• “StructFile” class

• Fast on-disk hash table

• Flexible date parser

• Text analyzers

• On-disk FSA/FST

• Cross-platform file lock

• Space-efficient integer
sets

• On-disk columnar
storage

Friday, 15 March, 13

Resources

• Bitbucket repo:
https://bitbucket.org/mchaput/whoosh

• Documentation:
https://whoosh.readthedocs.org/en/latest/

• Mailing list:
http://groups.google.com/group/whoosh

• matt@whoosh.ca

Friday, 15 March, 13

https://bitbucket.org/mchaput/whoosh
https://bitbucket.org/mchaput/whoosh
https://whoosh.readthedocs.org/en/latest/
https://whoosh.readthedocs.org/en/latest/
http://groups.google.com/group/whoosh
http://groups.google.com/group/whoosh
mailto:matt@whoosh.ca
mailto:matt@whoosh.ca

Thank you!

Friday, 15 March, 13

