

Why you should use Python 3 for text processing

Python is a great language for text processing.

Each new version of Python–especially the 3.x series–
has enhanced this strength.

String (and byte) objects have grown some handy
methods.

Built-in functions have improved or been added.

Refinements and additions have been made to the
standard library to cover the most common tasks in
text processing.

PyCon 2013: Python 3 for text processing David Mertz

Why I want to give this talk

A long time ago I wrote a book for Addison Wesley
called Text Processing in Python; the text of it has
always been free at http://gnosis.cx/TPiP/.

Showing my gray hairs, this book was quite up-to-date
for Python 2.2. A lot has changed since then! (and a
lot still has not changed, nor should it).

Many–but not all–of the nice things in Python 3.3
have been back-ported to 2.7.3 (or were already
included in 2.x.

PyCon 2013: Python 3 for text processing David Mertz

http://gnosis.cx/TPiP/

Places to go for sources of amazement and intrigue

http://docs.python.org/3.3/whatsnew/

http://docs.python.org/3.2/whatsnew/

http://docs.python.org/3.1/whatsnew/

http://docs.python.org/3.0/whatsnew/

This talk is an impressionistic review of nice-to-have
improvements to text processing that have come to
python in the last decade, but with an emphasis on 3.x
features.

PyCon 2013: Python 3 for text processing David Mertz

http://docs.python.org/3.0/whatsnew/

A little bit of Python version history

Python 3.0 2008-12-03

Python 3.1 2009-06-27

Python 2.7 2010-07-03

Python 3.2 2011-02-20

Python 2.7.3 2012-04-09

Python 3.3 2012-09-29

PyCon 2013: Python 3 for text processing David Mertz

PyCon 2013: Python 3 for text processing David Mertz

Cool stuff in collections page 1

Improvements to collections help with many things,
but seem to come up particularly often as nice ways to
do text processing tasks: e.g. namedtuple; Counter;
OrderedDict; defaultdict; ChainMap.

Most of what's “new in Python 3.1” has also been back-
ported to Python 2.7.x.

Most of this is just cool in general, and not just for text
processing.

PyCon 2013: Python 3 for text processing David Mertz

Cool stuff in collections page 2

namedtuple is particularly useful for dealing with CSV
(a text processing matter) and database rows.

import csv
from collections import namedtuple
users = open('users.csv')
headers = users.readline()
UserRecord = namedtuple('UserRec', headers,
 rename=True)
for row in csv.reader(users):
 print(UserRecord(*row))

UserRec(first='John', last='Doe', age='39')
UserRec(first='Sally', last='Wu', age='52')
UserRec(first='Ruby', last='Sanchez', age='19')

PyCon 2013: Python 3 for text processing David Mertz

Cool stuff in collections page 3

Counter is widely useful, but one text processing area
that often comes up is histograms.

>>> from collections import Counter
>>> c1 = Counter('abaracadabara')
>>> c1.most_common(4)
[('a', 7), ('r', 2), ('b', 2), ('d', 1)]
>>> c1['d'] -= 10 # requires 3.3
>>> c1.most_common()[-2:]
[('c', 1), ('d', -9)]

PyCon 2013: Python 3 for text processing David Mertz

Cool stuff in collections page 4

Counter also allows some common pseudo-arithmetic
operations, and is basically a defaultdict to value 0.

>>> c2 = Counter('ramalama bim boom')
>>> (c1 + c2).most_common(4)
[('a', 11), ('b', 4), ('m', 4), ('r', 3)]
>>> +c1 # New in 3.3
Counter({'a': 7, 'b': 2, 'r': 2, 'c': 1})
>>> c1['a'], c1['x']
(7, 0)

PyCon 2013: Python 3 for text processing David Mertz

Cool stuff in collections page 5

ChainMap is a new Python 3.3 collection that looks
interesting. It is a “container of containers” that acts
seamlessly. In a sneaky way, it is equivalent to a
dynamic inheritance hierarchy and an MRO.

>>> d1 = {'a':1, 'b':2, 'c':3, 'd':4}
>>> d2 = {'d':5, 'e':6, 'f':7, 'g':8}
>>> chain = ChainMap(d1, d2)
>>> chain['a'], chain['d'], chain['f']
(1, 4, 7)
>>> child = ChainMap({'a':99, 'x':24}, chain)
>>> child['a'], child['c'], child['x']
(99, 3, 24)

PyCon 2013: Python 3 for text processing David Mertz

Cool syntax improvements for built-in collections

I noticed some of the comprehensions only recently:

>>> {i:str(i) for i in range(5)}
{0: '0', 1: '1', 2: '2', 3: '3', 4: '4'}

>>> {str(i) for i in range(5)}
set(['1', '0', '3', '2', '4'])

>>> {'1', '0', '3', '2', '4'}
set(['1', '0', '3', '2', '4'])

>>> (i for i in range(5)) # NOT a tuple...
<generator object <genexpr> at 0x1320eb8>

PyCon 2013: Python 3 for text processing David Mertz

Good stuff about Unicode in Python 3.3 page 1

Unicode is hard! However difficult you think it is, it is
harder than that to get right.

“Most” of the Unicode you care about is in the BMP (Basic
Multilingual Plane). In fact, all of Latin-1 is in range 00 of
the BMP... Most isn't all!

Internal encoding matters. With fixed-width encoding (i.e.
UTF-32/UCS-4) you use a lot of memory. With variable-
width (UTF-8), position indexing is very slow. With UTF-
16/UCS-2 you get the worst of everything: not strictly fixed
width (i.e. surrogate pairs) and usually wasted memory.

PyCon 2013: Python 3 for text processing David Mertz

Good stuff about Unicode in Python 3.3 page 2

Variable-width encoding in UTF-16

>>> h = '� ' # CJK UNIFIED IDEOGRAPH-2008A'

>>> m = 'M' # ASCII 'M'

>>> h.encode('utf-8'), m.encode('utf-8')

(b'\xf0\xa0\x82\x8a', b'M')

>>> h.encode('utf-16'), m.encode('utf-16')

(b'\xff\xfe@\xd8\x8a\xdc', b'\xff\xfeM\x00')

>>> h.encode('utf-32'), m.encode('utf-32')

(b'\xff\xfe\x00\x00\x8a\x00\x02\x00',

 b'\xff\xfe\x00\x00M\x00\x00\x00')

PyCon 2013: Python 3 for text processing David Mertz

Good stuff about Unicode in Python 3.3 page 3

Internal representation got a lot better with PEP-393.

There are lots of details in the PEP about the internal
API. What you need to know as a Python programmer
is that the strings you create will now (usually) be
stored in the best choice among Latin-1, UTF-16, and
UTF-32.

While micro-benchmarks may do worse with the
change, large applications with lots of (usually ASCII)
strings in them will probably half their memory usage.

PyCon 2013: Python 3 for text processing David Mertz

Good stuff about Unicode in Python 3.3 page 4

Python has kept pace with changes in Unicode itself.
Thousand of code points have been added, for
example. For most developers it won't matter, but
better to avoid a strange bug on unusual inputs.

Slightly controversially, 3.3 adds back the explicit
unicode literals entirely to aid in porting 2.x software
to Python 3.3. Now you are welcome to write
u'Foobar' everywhere you had written just 'Foobar'
in Python 3 code; more relevantly, your Python 2.x
code doesn't require changing the u'Foobar' to port.

PyCon 2013: Python 3 for text processing David Mertz

A nice string method to notice

The following has been in place for years, and many
experienced developers (including me) took years to
notice it: The string methods .startswith() and
.endswith() will accept a tuple of strings as well as a
single string! (but not a list or other iterable as an
argument)

>>> for word in "Mary had a little lamb".split():

... if word.startswith(('h','l')):

... print(word, end=';')

...

had;little;lamb;

(I have myself written for prefix in prefixes: … countless times!)

PyCon 2013: Python 3 for text processing David Mertz

Module textwrap page 1

This has been around for many versions (small features
have been added); when I started writing about and in
Python, I did ad hoc versions of text wrapping many
times. Unfortunately, I still see code with similar one-
offs in projects, at times.

>>> print(textwrap.fill(s, width=35,
 initial_indent="| ", subsequent_indent="| "))

| Lorem ipsum dolor sit amet,
| consectetur adipisicing elit, sed
| do eiusmod tempor incididunt ut
| labore et dolore magna aliqua.

PyCon 2013: Python 3 for text processing David Mertz

Module textwrap page 2

Here is something that I often forget to do; instead I
use some awkward workaround. Don't be like me.

def myfunc():
 multi_line = """
 Lorem ipsum dolor sit amet,
 consectetur adipisicing elit, sed
 do eiusmod tempor incididunt u
 labore et dolore magna aliqua.
 """
 multi_line = textwrap.dedent(multi_line)
 do_something_with(multi_line)

(In docstrings you usually want to preserve line breaks, not overall indentation)

PyCon 2013: Python 3 for text processing David Mertz

Module textwrap page 3

There are a few things new in textwrap in 3.x.
.indent() is a nice shortcut with some extra power.
The option tabsize is new to 3.3.

>>> print(textwrap.indent(message, '| ',
 predicate=lambda l:
 not l.endswith('wrote:\n')))

David Mertz, Ph.D. <mertz@gnosis.cx> wrote:
| Lorem ipsum dolor sit amet,
| consectetur adipisicing elit, sed
| do eiusmod tempor incididunt ut
| labore et dolore magna aliqua.

PyCon 2013: Python 3 for text processing David Mertz

Module html.entities

Working with HTML is a common task, and one minor
thorn is entity definitions. It is easier to deal with
now, including the nice html5 dict in Python 3.3.

>>> from html.entities import \
 entitydefs, html5, codepoint2name
>>> html5['Exists;'], html5['NegativeThinSpace;']
('∃', '\u200b')
>>> entitydefs['Theta'], entitydefs['copy']
('Θ', '©')
>>> codepoint2name[ord('χ')]
'chi'

PyCon 2013: Python 3 for text processing David Mertz

Module unicodedata

I have touched on Unicode already, but in the spirit of
html.entities, it is worth noticing unicodedata also.

>>> unicodedata.unidata_version
'6.1.0'
>>> unicodedata.name('� ')
'CJK UNIFIED IDEOGRAPH-2008A'
>>> unicodedata.east_asian_width('� ')
'W'
>>> unicodedata.category('� ')
'Lo'
>>> unicodedata.lookup('GREEK SMALL LETTER CHI')
'χ'

PyCon 2013: Python 3 for text processing David Mertz

Desperately overdue

For many years, a handy function called quote() has
hidden in pipes. While not an ideal location, more
importantly it was undocumented! In 3.3 it is officially
supported in shlex. Here's why you need it:

>>> from subprocess import call
>>> filename = input("File to display? ")
File to display? non_existent; rm -rf / #
Uh-oh. This will end badly...
>>> call("cat " + filename, shell=True)

I find myself also often writing Python scripts to
generate bash scripts; I won't be malicious, but I can
certainly overlook escaping requirements.

PyCon 2013: Python 3 for text processing David Mertz

The format specification mini-language page 1

The format() function and .format() method of
strings are enormously powerful, and enormously
confusing. However, they can do more than old-style
string-interpolation. Let's try it old-style.

>>> costs = (1234.5678, 9900000.1, 83, .02)
>>> for n, item in enumerate(costs):
... print("Purchase %d:\t$%.2f" % (n+1, item))

Purchase 1: $1234.57
Purchase 2: $9900000.10
Purchase 3: $83.00
Purchase 4: $0.02

PyCon 2013: Python 3 for text processing David Mertz

The format specification mini-language page 2

We can do better than the last slide using a format
specifier. In particular, two things we want in
formatted currencies is comma separators in large
numbers and right alignment.

>>> line = "Purchase {}:\t${:>13,.2f}"
>>> for n, item in enumerate(costs):
... print(line.format(n+1, item))

Purchase 1: $ 1,234.57
Purchase 2: $ 9,900,000.10
Purchase 3: $ 83.00
Purchase 4: $ 0.02

PyCon 2013: Python 3 for text processing David Mertz

The format specification mini-language page 3

We compactly described the currency format above.
However, I would rather have the dollar sign close to
its amount. I think this need be done in two stages.

>>> line = "Purchase {}:\t{:>14}"
>>> for n, item in enumerate(costs):
... amount = "${:,.2f}".format(item)
... print(line.format(n+1, amount))

Purchase 1: $1,234.57
Purchase 2: $9,900,000.10
Purchase 3: $83.00
Purchase 4: $0.02

PyCon 2013: Python 3 for text processing David Mertz

Module email page 1

The email module does a lot. In Python 3.2+ (email
5.1), the handling of bytes and unicode is both correct
and powerful. Credit for this goes to R. David Murray,
partially funded by the PSF.

The problem was that emails are typically read and
stored in the form of bytes rather than str text, and they
may contain multiple encodings within a single email.
So, the email package had to be extended to parse and
generate email messages in bytes format.

–“What's new in Python 3.2”

PyCon 2013: Python 3 for text processing David Mertz

Module email page 2

Just for fun, let's play with email slightly.

>>> import email
>>> msg = email.message_from_file(open('email'))
>>> msg['Subject'], msg.get_content_maintype(), \
 msg.is_multipart(), msg.get_content_subtype()
('Course progress', 'multipart', True, 'signed')
>>> msg.get_payload()
[<email.message.Message object at 0x1010f8810>,
 <email.message.Message object at 0x1010f8990>]
>>> msg.get_payload()[1].get_content_type()
'application/pgp-signature'

PyCon 2013: Python 3 for text processing David Mertz

Module email page 3

A bit more exploration of the parts in the email.

>>> print(msg.get_payload()[1])

Content-Transfer-Encoding: 7bit

Content-Disposition: attachment; filename=signature.asc

Content-Type: application/pgp-signature; name=signature.asc

Content-Description: Message signed with OpenPGP [...]

-----BEGIN PGP SIGNATURE-----

Version: GnuPG/MacGPG2 v2.0.18 (Darwin)

iEYEARECAAYFAlE+dNQACgkQvMseJzFyYtJgzgCcDq4M2dStUQJdZ[...]

-----END PGP SIGNATURE-----

PyCon 2013: Python 3 for text processing David Mertz

Module email page 4

Let's examine the main body of the email, before the
signature just to wrap up these examples.

>>> b = msg.get_payload()[0]
>>> b.keys()
['Content-Disposition', 'Content-Type',
 'Content-Transfer-Encoding']
>>> b.get_content_type(), b['Content-Disposition']
('image/tiff',
 'inline;\n\tfilename=Course-Progress.tiff')
>>> body.get_payload()[:45]
'TU0AKgAAliiAP+BP8AQWDQeEQmFQuGQ2HQ+IRGJROKRWL'

PyCon 2013: Python 3 for text processing David Mertz

Module datetime

Mostly datetime has been stable for a long time. But
Python 3.x versions have added a few nice touches.

>>> from datetime import datetime, timedelta
>>> mytalk = datetime(2013, 3, 16, 12, 30)
>>> str(mytalk), mytalk.timestamp()
('2013-03-16 12:30:00', 1363462200.0)
>>> now = datetime.now()
>>> until_talk = mytalk - now
>>> until_talk.total_seconds()
226188.793891
>>> until_talk
datetime.timedelta(2, 53388, 793891)

PyCon 2013: Python 3 for text processing David Mertz

A few other modules

The module csv isn't new, but you should keep it in mind
rather than decide that your data files are “so simple you
don't need to use the module.”

The module hashlib is only new if you are as old as I am,
but here is something cool in Python 3.2+.

>>> hashlib.algorithms_guaranteed
{'sha1','md5','sha384','sha512','sha224','sha256'}
>>> hashlib.algorithms_available
{'SHA1','DSA-SHA','sha','DSA','mdc2','dsaWithSHA','SHA',

 'ecdsa-with-SHA1','SHA384','sha512','SHA512','SHA256',

 'ripemd160','sha1','dsaEncryption','MDC2','md5','md4',

 'RIPEMD160','sha384','SHA224','sha224','MD5','sha256'}

PyCon 2013: Python 3 for text processing David Mertz

Wrap-up / Questions?

There are many things I didn't get to talking about
that are somewhat new and/or updated, and
somewhat text processing-ish. For example, json,
xml.etree.ElementTree, or decimal.

Anything special the audience thinks I missed, or
hints of your own to share?

Other questions?

Email me at: <mertz@gnosis.cx>

