
Google Confidential and Proprietary

Python 3.3:
Trust Me, It's Better Than
Python 2.7

Dr. Brett Cannon
http://about.me/brettcannon

March 2013

http://about.me/brettcannon
http://about.me/brettcannon

Google Confidential and Proprietary

Features of Python 3.0 through 3.3

Google Confidential and Proprietary

Stuff you already have in (at least) Python 2.7

● Requires a __future__ statement
○ Absolute import
○ Unicode literals
○ "New" division
○ print function

● Set literals
● Set and dict comprehensions
● Multiple context managers
● C-based io library
● memoryview

○ New implementation in Python 3.3
● future_builtins
● except Exception as exc: ...
● str.format()

○ Python 2.7 added auto-numbering (e.g. '{} {}'.format(0, 1))
● numbers

Google Confidential and Proprietary

Minor features (that don't need an entire slide to explain)

● Dict views
● Comparison against disparate types is a TypeError

○ 2 > 'a'
● raise Exception, 42 is a no-no
● Metaclasses

○ metaclass class argument
○ __prepare__

● Standard library cleanup
● argparse
● Dictionary-based configuration for logging
● wsgi 1.0.1
● super()
● Unified integers
● __next__()

Google Confidential and Proprietary

Minor features added in Python 3.3

● Reworking the OS and I/O exception hierarchy
● New modules

○ lzma
○ ipaddress
○ faulthandler

● email package's new policy & header API
● Key-sharing dictionaries

○ OO code can save 10% - 20% on memory w/o performance
degradation

Google Confidential and Proprietary

Features fancy/complicated enough to need their own
slides

Google Confidential and Proprietary

nonlocal

>>> def scoping():
... higher_scoped = 0
... def increment():
... nonlocal higher_scoped
... higher_scoped += 1
... def value():
... return higher_scoped
... return inc, value
...
>>> increment, value = scoping()
>>> increment(); increment() # 0 + 1 + 1 = 2
>>> value()
2

Google Confidential and Proprietary

Extended iterable unpacking

>>> first, *rest = range(5)
>>> first
0
>>> rest
[1, 2, 3, 4]

>>> a, *b, c = range(5)
>>> a
0
>>> b
[1, 2, 3]
>>> c
4

Google Confidential and Proprietary

Stable ABI

● Defines a "stable set of API functions"
● "Guaranteed to be available for the lifetime

of Python 3"
● "Binary-compatible across versions"

Google Confidential and Proprietary

concurrent.futures

def big_calculation(num):
 return num ** 1000000

arguments = list(range(20))

Takes 6 seconds ...
list(map(big_calculation, arguments))

Takes 1 second ...
from concurrent import futures
with futures.ProcessPoolExecutor() as executor:
 list(executor.map(big_calculation, arguments))

Google Confidential and Proprietary

decimal module implemented in C

● New in Python 3.3
● Preview of benchmark results: 30x faster than pure Python version

not uncommon (seen as high as 80x)!

Google Confidential and Proprietary

Qualified names

● New in Python 3.3
● __name__ + '.' + self.__qualname__ should give you the

fully qualified name for an object now

>>> class C:
... def f(): pass
...
>>> C.f.__name__
'f'
>>> C.f.__qualname__
'C.f'

Google Confidential and Proprietary

yield from

● New in Python 3.3
● Allows generators to be factored out and replaced with a single

expression
○ "yield from is to generators as calls are to functions"

def stupid_example():
 yield 0; yield 1; yield 2

def factored_out():
 yield 1; yield 2

def refactored_stupid():
 yield 0
 yield from factored_out()

Google Confidential and Proprietary

venv

● New in Python 3.3
● Essentially virtualenv redone as part of Python itself

○ Creates an isolated directory where the system/user-wide site-
packages directory is ignored

● Ways to create a virtual environment
○ python3 -m venv /path/to/new/virtual/environment
○ pyvenv /path/to/new/virtual/environment

● "a Python virtual environment in its simplest form would consist of
nothing more than a copy or symlink of the Python binary
accompanied by a pyvenv.cfg file and a site-packages
directory"

Google Confidential and Proprietary

BIGGER features/themes that need lots of slides

Google Confidential and Proprietary

Exceptions

Google Confidential and Proprietary

Included traceback

>>> import traceback
>>> try:
... raise Exception
... except Exception as exc:
... traceback.print_tb(exc.__traceback__)
...
 File "<stdin>", line 2, in <module>

Google Confidential and Proprietary

Implicit exception chaining

>>> try:
... raise Exception
... except Exception:
... raise NotImplementedError # __context__ set
...
Traceback (most recent call last):
 File "<stdin>", line 2, in <module>
Exception

During handling of the above exception, another
exception occurred:

Traceback (most recent call last):
 File "<stdin>", line 4, in <module>
NotImplementedError

Google Confidential and Proprietary

Explicit exception chaining

>>> try:
... raise Exception
... except Exception as exc:
... # Sets __cause__
... # In Python 3.3, ``from None`` suppresses
... raise NotImplementedError from exc
...
Traceback (most recent call last):
 File "<stdin>", line 2, in <module>
Exception

The above exception was the direct cause of the following
exception:

Traceback (most recent call last):
 File "<stdin>", line 4, in <module>
NotImplementedError

Google Confidential and Proprietary

Import

Google Confidential and Proprietary

importlib as import (see my other talk for details)

● New in Python 3.3
● Pure Python implementation of import

○ All VMs should end up using the same implementation of import
● Allows for easier customization
● Easier writing of importers
● Logic of import, at a high level, is much simpler

Google Confidential and Proprietary

Finer-grained import lock

● New in Python 3.3
● Importing in a thread used to cause deadlock

○ Could be unintended when a thread called a function that had a local
import
■ E.g. functions in os -- in order to allow for faster startup -- were often a

trigger by doing local imports
● Now threads block until the import completes

○ If deadlock possible (read: circular import), then partially initialized
modules allowed

Google Confidential and Proprietary

__pycache__ directories

● All .pyc files now kept in a __pycache__ directory
● .pyc filenames contain the interpreter and version number

○ Allows for different interpreters and versions of Python to have .pyc
files without overwriting each other

● You can still distribute only .pyc files without source
○ ... unfortunately

Google Confidential and Proprietary

Namespace packages

● New in Python 3.3
● All directories with no __init__.py file but whose name matches

that of the package being imported are collected and set as the
__path__ for an empty module

● Namespace modules set typical attributes but __file__
● Any change to the __path__ of the parent package (or sys.path

when no parent) triggers a recalculation of __path__ for the
namespace package
○ E.g. if monty.__path__ changes, then monty.python.__path__

is recalculated on access
● All previous imports (i.e. regular packages, modules) continue to

work and take precedence over namespace packages

Google Confidential and Proprietary

Functions

Google Confidential and Proprietary

Keyword-only arguments

● Great for expanding pre-existing APIs
○ Never have to worry about a programmer accidentally using a new

API by passing more arguments than expected

def monty_python(bacon, spam, *, different=None):
 pass

Google Confidential and Proprietary

Function annotations

● Can annotate any parameter and the return value with any object
○ Does not have to be type-specific!
○ Standard library explicitly does not use function annotations to allow

community to decide how to use them

spam = None
bacon = 42

def monty_python(a:spam, b:bacon) -> "different":
 pass

Google Confidential and Proprietary

Function signature objects

● New in Python 3.3
● Provides an object representation of every detail of a callable's

signature
○ Names
○ Annotations
○ Default values
○ Positional, keyword (only)

● Can use to calculate how arguments would be bound by a call
● Can create objects from scratch, allowing for adding parameter

details to callables that typically don't have such details
○ E.g. C-based functions

Google Confidential and Proprietary

Unicode, unicode, unicode!

Google Confidential and Proprietary

Unicode while you code!

● UTF-8 is the default encoding for source code
● Non-ASCII identifiers

○ Not everything in the entire Unicode standard, but a lot is allowed

Google Confidential and Proprietary

Unicode while specifying string literals!

● All string literals are Unicode
○ The u prefix is allowed in Python 3.3 and is a no-op

■ Allows for specifying bytes, unicode, and native strings in Python 2.7 vs
3.3 syntactically

■ 'native string'
● Used when you work with ASCII text only
● Python 2.7: str type
● Python 3.3: str type

■ u'always Unicode'
● Python 2.7: unicode type
● Python 3.3: str type

■ b'some bytes'
● Python 2.7: bytes type (alias for str)
● Python 3.3: bytes type

○ from __future__ import unicode_literals
● Biggest porting hurdle when you have not clearly delineated what is

text vs. what are bytes

Google Confidential and Proprietary

Better Unicode during execution in Python 3.3!

● Python chooses the most compact representation for a string
internally
○ Latin-1, UTF-16, or UTF-32

● No more narrow vs. wide builds!
○ Extensions will no longer need to be built twice
○ Python can now always represent any Unicode character unlike a

narrow build with non-BMP characters
● Memory usage compared to Python 2.7

○ Narrow build smaller in Python 2.7 in a Django benchmark by less
than 8%

○ Python 3.3 smaller compared to a wide build of Python 2.7 by more
than 9%

Google Confidential and Proprietary

Who's faster?

Google Confidential and Proprietary

How I benchmarked

● Compiled from the same checkout on the same day
○ 2.7 and 3.3 branch
○ Decided not to download binaries as building from scratch was easier

and you will all eventually be running that code anyway
○ UCS4/wide build for a more equal comparison of abilities

● Results are relative between the two binaries
○ Means low-level details don't really matter as they equally affect both

binaries
● Results from a Core i7 MacBook Pro running OS X 10.8
● Used the unladen benchmarks + extras

○ http://hg.python.org/benchmarks
○ Now includes as many PyPy benchmarks as possible
○ Used some libraries which do not have released Python 3 support

officially -- but have it in code repository -- so not entirely what is
publicly available

http://hg.python.org/benchmarks
http://hg.python.org/benchmarks

Google Confidential and Proprietary

If you sorted all of the benchmarks and looked at the
median result ...

Google Confidential and Proprietary

Python 3.3 is THE SAME

Google Confidential and Proprietary

Worst benchmark result

startup_nosite is 0.73x slower

Google Confidential and Proprietary

Best benchmark result

telco is 46.96x faster

Google Confidential and Proprietary

Google Confidential and Proprietary

Google Confidential and Proprietary

Q&A

Google Confidential and Proprietary

Google Confidential and Proprietary

Google Confidential and Proprietary

Google Confidential and Proprietary

Google Confidential and Proprietary

Macro benchmark numbers

pathlib (0.6) -0.30 -0.24

mako_v2 (0.7.3) -0.12 -0.19

genshi (trunk) -0.11 -0.07

django (1.5.0a1) -0.07 -0.05

html5lib (trunk) 0.00 0.04

2to3 (2.6) 0.04 0.08

chameleon (2.9.2) 0.16 0.17

