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Features of Python 3.0 through 3.3
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Stuff you already have in (at least) Python 2.7

● Requires a __future__ statement
○ Absolute import
○ Unicode literals
○ "New" division
○ print function

● Set literals
● Set and dict comprehensions
● Multiple context managers
● C-based io library
● memoryview

○ New implementation in Python 3.3
● future_builtins
● except Exception as exc: ...
● str.format()

○ Python 2.7 added auto-numbering (e.g. '{} {}'.format(0, 1))
● numbers
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Minor features (that don't need an entire slide to explain)

● Dict views
● Comparison against disparate types is a TypeError

○ 2 > 'a'
● raise Exception, 42 is a no-no
● Metaclasses

○ metaclass class argument
○ __prepare__

● Standard library cleanup
● argparse
● Dictionary-based configuration for logging
● wsgi 1.0.1
● super()
● Unified integers
● __next__()
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Minor features added in Python 3.3

● Reworking the OS and I/O exception hierarchy
● New modules

○ lzma
○ ipaddress
○ faulthandler

● email package's new policy & header API
● Key-sharing dictionaries

○ OO code can save 10% - 20% on memory w/o performance 
degradation
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Features fancy/complicated enough to need their own 
slides
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nonlocal

>>> def scoping():
...   higher_scoped = 0
...   def increment():
...     nonlocal higher_scoped
...     higher_scoped += 1
...   def value():
...     return higher_scoped
...   return inc, value
... 
>>> increment, value = scoping()
>>> increment(); increment()  # 0 + 1 + 1 = 2
>>> value()
2
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Extended iterable unpacking

>>> first, *rest = range(5)
>>> first
0
>>> rest
[1, 2, 3, 4]

>>> a, *b, c = range(5)
>>> a
0
>>> b
[1, 2, 3]
>>> c
4
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Stable ABI

● Defines a "stable set of API functions"
● "Guaranteed to be available for the lifetime 

of Python 3"
● "Binary-compatible across versions"
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concurrent.futures

def big_calculation(num):
    return num ** 1000000

arguments = list(range(20))

# Takes 6 seconds ...
list(map(big_calculation, arguments))

# Takes 1 second ...
from concurrent import futures
with futures.ProcessPoolExecutor() as executor:
    list(executor.map(big_calculation, arguments))
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decimal module implemented in C

● New in Python 3.3
● Preview of benchmark results: 30x faster than pure Python version 

not uncommon (seen as high as 80x)!
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Qualified names

● New in Python 3.3
● __name__ + '.' +  self.__qualname__ should give you the 

fully qualified name for an object now

>>> class C:
...   def f(): pass
... 
>>> C.f.__name__
'f'
>>> C.f.__qualname__
'C.f'
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yield from

● New in Python 3.3
● Allows generators to be factored out and replaced with a single 

expression
○ "yield from is to generators as calls are to functions"

def stupid_example():
    yield 0; yield 1; yield 2

def factored_out():
    yield 1; yield 2

def refactored_stupid():
    yield 0
    yield from factored_out()
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venv

● New in Python 3.3
● Essentially virtualenv redone as part of Python itself

○ Creates an isolated directory where the system/user-wide site-
packages directory is ignored

● Ways to create a virtual environment
○ python3 -m venv /path/to/new/virtual/environment
○ pyvenv /path/to/new/virtual/environment

● "a Python virtual environment in its simplest form would consist of 
nothing more than a copy or symlink of the Python binary 
accompanied by a pyvenv.cfg file and a site-packages 
directory"
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BIGGER features/themes that need lots of slides
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Exceptions
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Included traceback

>>> import traceback
>>> try:
...   raise Exception
... except Exception as exc:
...   traceback.print_tb(exc.__traceback__)
... 
  File "<stdin>", line 2, in <module>
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Implicit exception chaining

>>> try:
...   raise Exception
... except Exception:
...   raise NotImplementedError  # __context__ set
... 
Traceback (most recent call last):
  File "<stdin>", line 2, in <module>
Exception

During handling of the above exception, another 
exception occurred:

Traceback (most recent call last):
  File "<stdin>", line 4, in <module>
NotImplementedError
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Explicit exception chaining

>>> try:
...   raise Exception
... except Exception as exc:
...   # Sets __cause__
...   # In Python 3.3, ``from None`` suppresses
...   raise NotImplementedError from exc
... 
Traceback (most recent call last):
  File "<stdin>", line 2, in <module>
Exception

The above exception was the direct cause of the following 
exception:

Traceback (most recent call last):
  File "<stdin>", line 4, in <module>
NotImplementedError
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Import
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importlib as import (see my other talk for details)

● New in Python 3.3
● Pure Python implementation of import

○ All VMs should end up using the same implementation of import
● Allows for easier customization
● Easier writing of importers
● Logic of import, at a high level, is much simpler
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Finer-grained import lock

● New in Python 3.3
● Importing in a thread used to cause deadlock

○ Could be unintended when a thread called a function that had a local 
import
■ E.g. functions in os -- in order to allow for faster startup -- were often a 

trigger by doing local imports
● Now threads block until the import completes

○ If deadlock possible (read: circular import), then partially initialized 
modules allowed
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__pycache__ directories

● All .pyc files now kept in a __pycache__ directory
● .pyc filenames contain the interpreter and version number

○ Allows for different interpreters and versions of Python to have .pyc 
files without overwriting each other

● You can still distribute only .pyc files without source
○ ... unfortunately
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Namespace packages

● New in Python 3.3
● All directories with no __init__.py file but whose name matches 

that of the package being imported are collected and set as the 
__path__ for an empty module

● Namespace modules set typical attributes but __file__
● Any change to the __path__ of the parent package (or sys.path 

when no parent) triggers a recalculation of __path__ for the 
namespace package
○ E.g. if monty.__path__ changes, then monty.python.__path__ 

is recalculated on access
● All previous imports (i.e. regular packages, modules) continue to 

work and take precedence over namespace packages
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Functions



Google Confidential and Proprietary

Keyword-only arguments

● Great for expanding pre-existing APIs
○ Never have to worry about a programmer accidentally using a new 

API by passing more arguments than expected

def monty_python(bacon, spam, *, different=None):
  pass
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Function annotations

● Can annotate any parameter and the return value with any object
○ Does not have to be type-specific!
○ Standard library explicitly does not use function annotations to allow 

community to decide how to use them

spam = None
bacon = 42

def monty_python(a:spam, b:bacon) -> "different":
  pass
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Function signature objects

● New in Python 3.3
● Provides an object representation of every detail of a callable's 

signature
○ Names
○ Annotations
○ Default values
○ Positional, keyword (only)

● Can use to calculate how arguments would be bound by a call
● Can create objects from scratch, allowing for adding parameter 

details to callables that typically don't have such details
○ E.g. C-based functions
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Unicode, unicode, unicode!
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Unicode while you code!

● UTF-8 is the default encoding for source code
● Non-ASCII identifiers

○ Not everything in the entire Unicode standard, but a lot is allowed
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Unicode while specifying string literals!

● All string literals are Unicode
○ The u prefix is allowed in Python 3.3 and is a no-op

■ Allows for specifying bytes, unicode, and native strings in Python 2.7 vs 
3.3 syntactically

■ 'native string'
● Used when you work with ASCII text only
● Python 2.7: str type
● Python 3.3: str type

■ u'always Unicode'
● Python 2.7: unicode type
● Python 3.3: str type

■ b'some bytes'
● Python 2.7: bytes type (alias for str)
● Python 3.3: bytes type

○ from __future__ import unicode_literals
● Biggest porting hurdle when you have not clearly delineated what is 

text vs. what are bytes
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Better Unicode during execution in Python 3.3!

● Python chooses the most compact representation for a string 
internally
○ Latin-1, UTF-16, or UTF-32

● No more narrow vs. wide builds!
○ Extensions will no longer need to be built twice
○ Python can now always represent any Unicode character unlike a 

narrow build with non-BMP characters
● Memory usage compared to Python 2.7

○ Narrow build smaller in Python 2.7 in a Django benchmark by less 
than 8%

○ Python 3.3 smaller compared to a wide build of Python 2.7 by more 
than 9%
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Who's faster?
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How I benchmarked

● Compiled from the same checkout on the same day
○ 2.7 and 3.3 branch
○ Decided not to download binaries as building from scratch was easier 

and you will all eventually be running that code anyway
○ UCS4/wide build for a more equal comparison of abilities

● Results are relative between the two binaries
○ Means low-level details don't really matter as they equally affect both 

binaries
● Results from a Core i7 MacBook Pro running OS X 10.8
● Used the unladen benchmarks + extras

○ http://hg.python.org/benchmarks
○ Now includes as many PyPy benchmarks as possible
○ Used some libraries which do not have released Python 3 support 

officially -- but have it in code repository -- so not entirely what is 
publicly available

http://hg.python.org/benchmarks
http://hg.python.org/benchmarks
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If you sorted all of the benchmarks and looked at the 
median result ...
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Python 3.3 is THE SAME
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Worst benchmark result

startup_nosite is 0.73x slower
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Best benchmark result

telco is 46.96x faster
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Q&A
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Macro benchmark numbers

pathlib (0.6) -0.30 -0.24

mako_v2 (0.7.3) -0.12 -0.19

genshi (trunk) -0.11 -0.07

django (1.5.0a1) -0.07 -0.05

html5lib (trunk) 0.00 0.04

2to3 (2.6) 0.04 0.08

chameleon (2.9.2) 0.16 0.17


