
 
 
What makes Python 
Awesome ? 

by Raymond Hettinger 
@raymondh 



whoami                             id -un 
Python Core Developer 
 

•   Builtins:  set(), frozenset(), sorted(), reversed(), enumerate(), any(), 
all() and the python3 version of zip() 

 
•   Standard library:  collections, itertools, lru_cache 

•   Language features:  key-functions, and  generator expressions 

•   Optimizations: peephole optimizer, length-hint, fast sum, etc. 
 
Python Instructor 
 

Ø  Adconion, Cisco, HP, EBay, Paypal, … 
 
Python evangelist and former PSF Board Member 
 
 



 
Context for Success 

•  License 
•  Commercial Distros: ActiveState/Enthought 
•  Zen 
•  Community 
•  Repository of Modules (PyPi) 
•  Killer Apps (Zope, Django, Pandas, Etc) 
•  Win32 
•  Books 



High level qualities of Python 

•  Ease of Learning 
•  Rapid Development Cycle 
•  Economy of Expression 
•  Readability and Beauty 
•  One way to do it 
•  Interactive Prompt 
•  Batteries Included 
•  Protocols -- wsgi, dbapi, … 



A bit of awesomeness in five minutes 
# Search directory tree for all duplicate files 
import os, hashlib, pprint 
 
hashmap = {}  # content signature -> list of filenames 
 
for path, dirs, files in os.walk('.'): 
    for filename in files: 
        fullname = os.path.join(path, filename) 
        with open(fullname) as f: 
            d = f.read() 
        h = hashlib.md5(d).hexdigest() 
        filelist = hashmap.setdefault(h, []) 
        filelist.append(fullname) 
  
pprint.pprint(hashmap) 



Why is Python awesome? 

Surely, something makes it great? 
 

Aren’t all scripting languages the same? 
 

Are there any unique features? 
 

What will propel Python into future? 
 

What will other langauges copy from us? 



Winning Language Feature: 
Indentation 

This is how we write our pseudo code 
 
It contributes to Python’s clean, uncluttered appearance 
 
It was an audacious move 
 
One of the secrets to debugging C is to run it through a 
beautifier so the indentation will reflect the actual logic, 
instead of the programmers intended logic 
 
With Python, the indentation is executable so the visual 
appearance and actual execution always match. 



Indentation:  Why you need it 

for (i=0 ; i<10 ; i++); 
    printf("Good morning\n"); 

 
 

if (x < y) 

    if (pred(x)) 
        printf("One"); 

else if (x == y) 
    printf("Two") 

else 
    printf("Three"); 



Winning Language Feature: 
Iterator Protocol 

•  High level glue that holds the language together 

•  Iterables: strings, lists, sets, dicts, collections, 
files, open urls, csv readers, itertools, etc 

•  Things that consume iterators:  for-loops, min, 
max, sorted, sum, set, list, tuple, dict, itertools 

•  Can be chained together like Unix pipes and 
filters 



Iterators 
 
sorted(set('abracadabra')) 
 
sorted(set(open(filename))) 
 
cat filename | sort | uniq 
 
 
sum(shares*price for symbol, shares, price 
                 in port) 
 
SELECT SUM(shares*price) FROM port; 



Winning Language Feature: 
List Comprehensions 

•  Arguably, one of the most loved language features 

•  Very popular addition to Python 

•  Derived from notation used in mathematics 

•  Clean and beautiful 

•  Much more flexible and expressive than 
    map, filter, and reduce 



List Comprehensions 

 
 

[line.lower() for line in open(filename) 
              if 'INFO' in line] 

 

 
sum([x**3 for x in range(10000)]) 



Generators 

Easiest way to write an Iterator 
 
Simple syntax, only adds the YIELD 
keyword 
 
Remembers state between invocations: 

the stack including open loops and try-
statements; the execution pointer; and local 
variables 



Generator Example 

def pager(lines, pagelen=60): 
    for lineno, line in enumerate(lines): 

        yield line 
        if lineno % pagelen == 0: 

            yield FORMFEED 



Winning Language Features: 
Genexps, Set comps, and Dict comps 

Logical extension of list 
comprehensions and generators 

to unify the language 



Genexps Setcomps and Dictcomps 

sum(x**3 for x in xrange(10000)) 

 
 

{os.path.splitext(filename)[1]  

      for filename in os.listdir('.')} 

 

{filename: os.path.getsize(filename) 
      for filename in os.listdir('.')} 



Generators that accept inputs 

•  Generators support send(), throw(), and close() 

•  Unique to Python 

•  Makes it possible to implement Twisted’s inline 
deferreds 



Two-way generator example 

@inline_deferred 

def session(request, cleared=False): 
    while not cleared: 

        cleared = yield authenticate(request.user) 

    db_result = yield database_query(request.query) 

    html = yield format_data(db_result) 

    yield post_result(html) 
    return end_session() 



Winning Language Feature: 
Decorators 

•  Expressive 

•  Easy on the eyes 

•  Works for functions, methods, and classes 

•  Adds powerful layer of composable tools 



Complete web service using Itty 
from itty import get, post, run_itty 

import os, subprocess 
 

@get('/env/(?P<name>\w+)') 

def lookup_environ_variable(request, name): 

    return os.environ[name] 

 
@get('/freespace') 

def compute_free_disk_space(request): 

    return subprocess.check_output('df') 

 

@post('/restart') 
def test_post(request): 

    os.system('restart') 

 

run_itty() 



Winning Language Feature: 
With-statement 

•  Clean, elegant resource management:  threads, 
locks, etc. 

•  More importantly, it is a tool for factoring code 

•  Factors-out common setup and teardown code 

•  Few languages currently have a counterpart to 
the with-statement 



Context mangers are easy to use 

with locking: 
    access_resource() 

 
with ignore(OSError): 

    os.remove(somefile) 

 
with localcontext(Context(prec=50)): 

    print Decimal(355) / Decimal(113) 
 



Winning Language Feature: 
Abstract Base Classes 

Uniform definition of what it means to be a 
sequence, mapping, etc 
 
 
Ability to override isinstance() and issubclass() 
 
Ø  The new duck-typing, “if it says it’s a duck …” 

 
 

Mix-in capability 
 



Abstract Base Class:  Mix-in 
class ListBasedSet(collections.Set): 
 
     def __init__(self, iterable): 
         self.elements = lst = [] 
         for value in iterable: 
             if value not in lst: 
                 lst.append(value) 
 
     def __iter__(self): 
         return iter(self.elements) 
 
     def __contains__(self, value): 
         return value in self.element 
 
     def __len__(self): 
         return len(self.elements) 



Winning Language Features: 
Summary 

•  Indentation 
•  Iterator Protocol 
•  Generators 
•  List comps, set comps, dict comps, and genexps 
•  Two-way generators 
•  Decorators 
•  With-statement 
•  Abstract Base Classes 



One more thing …         
Established superstars: 

•  Guido, Uncle Timmy, Barry, Effbot, Nick, Ka-Ping, Glyph  

•  Frank Wierzbicki, Armin Rigo, Maciej Fijalkowski, Armin Ronacher, 
Alex Martelli, Wes McKinney and Jacob Kaplan-Moss 

•   http://hg.python.org/committers.txt 
 
 
 
Young rising superstars: 
 
•  Benjamin Peterson 
 
•  Jessica McKellar 

•  Alex Gaynor 

Talent         



Anything Else? 

Is that all that makes Python awesome? 
 
 

Time for your thoughts and questions 


