Python without the GIL

Armin Rigo
Maciej Fijatkowski

PyCon US 2013

March 15 2013

arigo, fijal (PyCon US 2013) Python without the GIL March 15 2013

Intro

@ PyPy is a Python interpreter with stuff

@ No general PyPy talk this year, find us around, come
to the BoF (tomorrow 2pm)

arigo, fijal (PyCon US 2013) Python without the GIL March 15 2013 2/24

This is about...

@ This talk is about using multiple cores to achieve
better performance

@ in Python (or any other existing, non-trivial,
non-functional, non-designed-for-this-problem,
language)

arigo, fijal (PyCon US 2013) Python without the GIL March 15 2013

@ An existing complex, large program that does stuff

@ “stuff” consists of bits that are mostly independent
from each other

arigo, fijal (PyCon US 2013) Python without the GIL March 15 2013 4/24

@ An existing complex, large program that does stuff

@ “stuff” consists of bits that are mostly independent
from each other

@ ... but not quite

arigo, fijal (PyCon US 2013) Python without the GIL March 15 2013 4/24

@ We want to parallelize the program to use all these
cores

@ We have some shared mutable state

arigo, fijal (PyCon US 2013) Python without the GIL March 15 2013 5/24

@ We want to parallelize the program to use all these
cores

@ We have some shared mutable state

@ Not too much of it --- otherwise, no chance for
parallelism

@ But still some

arigo, fijal (PyCon US 2013) Python without the GIL March 15 2013 5/24

Classic solutions

Bare-metal multi-threading:
@ large shared state
@ needs careful usage of locks

@ mostly hindered by the GIL in CPython (but not in
Jython or IronPython)

arigo, fijal (PyCon US 2013) Python without the GIL March 15 2013 6/24

Classic solutions

Multi-processing:
@ no shared mutable state at all
@ copying, keeping in sync is your problem
@ serializing and deserializing is expensive and hard

@ memory usage is often multiplied (unless you’re lucky
with fork, but not on Python)

arigo, fijal (PyCon US 2013) Python without the GIL March 15 2013 7124

Classic solutions

A range of intermediate solutions:
@ MPI: message passing, with limited shared state

@ etc.: tons of experiments that never caught on in the
mainstream

arigo, fijal (PyCon US 2013) Python without the GIL March 15 2013 8/24

Classic solutions

The typical solution for web servers:
@ run independent processes
@ share data only via the database

@ the database itself handles concurrency with
transactions

arigo, fijal (PyCon US 2013) Python without the GIL March 15 2013

Demo

@ pypy—stm
@ internally based on “transactions” (STM, HTM)

arigo, fijal (PyCon US 2013) Python without the GIL March 15 2013 10/ 24

Demo

@ demo:

» multithreading.py

» multithreading2.py

» message_passing.py
» transactions2.py

arigo, fijal (PyCon US 2013) Python without the GIL March 15 2013 11/24

Status of the implementation

@ mostly works

@ major GC collections missing (leaks slowly)
@ JIT integration is not done

@ tons of optimizations possible

arigo, fijal (PyCon US 2013) Python without the GIL March 15 2013 12/24

How do | use it?

@ just like with the GIL

@ _ pypy_ .thread.atomic

@ with atomic: print "hello", username
@ the illusion of serialization

arigo, fijal (PyCon US 2013) Python without the GIL March 15 2013 13/24

STM - low level

@ STM = Software Transactional Memory

@ Basic idea: each thread runs in parallel, but
everything it does is in a series of “transactions”

@ A transaction keeps all changes to pre-existing
memory “local”

@ The changes are made visible only when the
transaction “commits”

arigo, fijal (PyCon US 2013) Python without the GIL March 152013

STM - low level (2)

@ The transaction will “abort” if a conflict is detected,
and it will be transparently retried

@ Non-reversible operations like 1/O turn the transaction
“inevitable” and stop progress in the other threads

@ _ pypy_ .thread.last_abort_info () ->
traceback-like information

arigo, fijal (PyCon US 2013) Python without the GIL March 15 2013 15/24

Alternative - HTM

@ Intel Haswell (released soon) has got HTM
@ great for the “remove the GIL’ part
@ not so great for large transactions, at least for now

arigo, fijal (PyCon US 2013) Python without the GIL March 15 2013 16/24

Higher level: Threads Are Bad

@ based on (and fully compatible with) threads
» existing multithreaded programs work

@ but opens up unexpected alternatives

arigo, fijal (PyCon US 2013) Python without the GIL March 15 2013 17 /24

Higher level: Atomic

@ we can run multiple threads but at the same time use
atomic
@ with the GlIL-based idea of at omi c it wouldn’t make
sense
» multiple threads
» but they’re all using atomic

» i.e. only one at a time will ever run
» ...except no :-)

arigo, fijal (PyCon US 2013) Python without the GIL March 15 2013 18/24

Transactions

@ transaction.py: example of wrapper hiding
threads

@ illusion of serial execution: can “sanely” reason about
algorithms

arigo, fijal (PyCon US 2013) Python without the GIL March 15 2013 19/24

Transaction conflicts

@ “Conflict tracebacks”

@ Might need to debug them --- but they are
performance bugs, not correctness bugs

@ The idea is that we fix only XX% of the bugs and we
are done

@ Maybe some new “performance debugger” tools
might help too

arigo, fijal (PyCon US 2013) Python without the GIL March 15 2013 20/24

We're not the only ones

TigerQuoll, 1st March: same idea with JavaScript (for
servers)
Various models possible:

@ events dispatchers
@ futures
@ map/reduce, scatter/gather

arigo, fijal (PyCon US 2013) Python without the GIL March 15 2013 21/24

Event dispatchers

@ twisted, tulip, etc.

@ run the event dispatcher in one thread (e.g. the main
thread), and schedule the actual events to run on a
different thread from a pool

@ the events are run with at omic, so that they appear
to run serially

@ does not rely on any change to the user program

arigo, fijal (PyCon US 2013) Python without the GIL March 15 2013 22/24

@ STMis primarily funded by donations
@ We got quite far with $22k USD

@ Thanks to the PSF and all others!

@ We need your help too

arigo, fijal (PyCon US 2013) Python without the GIL March 15 2013 23/24

@ http://pypy.org
@ http://bit.ly/pypystm

arigo, fijal (PyCon US 2013) Python without the GIL March 15 2013 24 /24

http://pypy.org
http://bit.ly/pypystm

