
Python without the GIL

Armin Rigo
Maciej Fijałkowski

PyCon US 2013

March 15 2013

arigo, fijal (PyCon US 2013) Python without the GIL March 15 2013 1 / 24

Intro

PyPy is a Python interpreter with stuff
No general PyPy talk this year, find us around, come
to the BoF (tomorrow 2pm)

arigo, fijal (PyCon US 2013) Python without the GIL March 15 2013 2 / 24

This is about...

This talk is about using multiple cores to achieve
better performance
in Python (or any other existing, non-trivial,
non-functional, non-designed-for-this-problem,
language)

arigo, fijal (PyCon US 2013) Python without the GIL March 15 2013 3 / 24

Problem

An existing complex, large program that does stuff
“stuff” consists of bits that are mostly independent
from each other

... but not quite

arigo, fijal (PyCon US 2013) Python without the GIL March 15 2013 4 / 24

Problem

An existing complex, large program that does stuff
“stuff” consists of bits that are mostly independent
from each other

... but not quite

arigo, fijal (PyCon US 2013) Python without the GIL March 15 2013 4 / 24

Problem

We want to parallelize the program to use all these
cores
We have some shared mutable state

Not too much of it --- otherwise, no chance for
parallelism
But still some

arigo, fijal (PyCon US 2013) Python without the GIL March 15 2013 5 / 24

Problem

We want to parallelize the program to use all these
cores
We have some shared mutable state

Not too much of it --- otherwise, no chance for
parallelism
But still some

arigo, fijal (PyCon US 2013) Python without the GIL March 15 2013 5 / 24

Classic solutions

Bare-metal multi-threading:
large shared state
needs careful usage of locks
mostly hindered by the GIL in CPython (but not in
Jython or IronPython)

arigo, fijal (PyCon US 2013) Python without the GIL March 15 2013 6 / 24

Classic solutions

Multi-processing:
no shared mutable state at all
copying, keeping in sync is your problem
serializing and deserializing is expensive and hard
memory usage is often multiplied (unless you’re lucky
with fork, but not on Python)

arigo, fijal (PyCon US 2013) Python without the GIL March 15 2013 7 / 24

Classic solutions

A range of intermediate solutions:
MPI: message passing, with limited shared state
etc.: tons of experiments that never caught on in the
mainstream

arigo, fijal (PyCon US 2013) Python without the GIL March 15 2013 8 / 24

Classic solutions

The typical solution for web servers:
run independent processes
share data only via the database
the database itself handles concurrency with
transactions

arigo, fijal (PyCon US 2013) Python without the GIL March 15 2013 9 / 24

Demo

pypy-stm

internally based on “transactions” (STM, HTM)

arigo, fijal (PyCon US 2013) Python without the GIL March 15 2013 10 / 24

Demo

demo:
I multithreading.py
I multithreading2.py
I message_passing.py
I transactions2.py

arigo, fijal (PyCon US 2013) Python without the GIL March 15 2013 11 / 24

Status of the implementation

mostly works
major GC collections missing (leaks slowly)
JIT integration is not done
tons of optimizations possible

arigo, fijal (PyCon US 2013) Python without the GIL March 15 2013 12 / 24

How do I use it?

just like with the GIL
__pypy__.thread.atomic

with atomic: print "hello", username

the illusion of serialization

arigo, fijal (PyCon US 2013) Python without the GIL March 15 2013 13 / 24

STM - low level

STM = Software Transactional Memory
Basic idea: each thread runs in parallel, but
everything it does is in a series of “transactions”
A transaction keeps all changes to pre-existing
memory “local”
The changes are made visible only when the
transaction “commits”

arigo, fijal (PyCon US 2013) Python without the GIL March 15 2013 14 / 24

STM - low level (2)

The transaction will “abort” if a conflict is detected,
and it will be transparently retried
Non-reversible operations like I/O turn the transaction
“inevitable” and stop progress in the other threads
__pypy__.thread.last_abort_info() ->
traceback-like information

arigo, fijal (PyCon US 2013) Python without the GIL March 15 2013 15 / 24

Alternative - HTM

Intel Haswell (released soon) has got HTM
great for the “remove the GIL” part
not so great for large transactions, at least for now

arigo, fijal (PyCon US 2013) Python without the GIL March 15 2013 16 / 24

Higher level: Threads Are Bad

based on (and fully compatible with) threads
I existing multithreaded programs work

but opens up unexpected alternatives

arigo, fijal (PyCon US 2013) Python without the GIL March 15 2013 17 / 24

Higher level: Atomic

we can run multiple threads but at the same time use
atomic
with the GIL-based idea of atomic it wouldn’t make
sense

I multiple threads
I but they’re all using atomic
I i.e. only one at a time will ever run
I ...except no :-)

arigo, fijal (PyCon US 2013) Python without the GIL March 15 2013 18 / 24

Transactions

transaction.py: example of wrapper hiding
threads
illusion of serial execution: can “sanely” reason about
algorithms

arigo, fijal (PyCon US 2013) Python without the GIL March 15 2013 19 / 24

Transaction conflicts

“Conflict tracebacks”
Might need to debug them --- but they are
performance bugs, not correctness bugs
The idea is that we fix only XX% of the bugs and we
are done
Maybe some new “performance debugger” tools
might help too

arigo, fijal (PyCon US 2013) Python without the GIL March 15 2013 20 / 24

We’re not the only ones

TigerQuoll, 1st March: same idea with JavaScript (for
servers)
Various models possible:

events dispatchers
futures
map/reduce, scatter/gather

arigo, fijal (PyCon US 2013) Python without the GIL March 15 2013 21 / 24

Event dispatchers

twisted, tulip, etc.
run the event dispatcher in one thread (e.g. the main
thread), and schedule the actual events to run on a
different thread from a pool
the events are run with atomic, so that they appear
to run serially
does not rely on any change to the user program

arigo, fijal (PyCon US 2013) Python without the GIL March 15 2013 22 / 24

Donate!

STM is primarily funded by donations
We got quite far with $22k USD
Thanks to the PSF and all others!
We need your help too

arigo, fijal (PyCon US 2013) Python without the GIL March 15 2013 23 / 24

Q&A

http://pypy.org

http://bit.ly/pypystm

arigo, fijal (PyCon US 2013) Python without the GIL March 15 2013 24 / 24

http://pypy.org
http://bit.ly/pypystm

