
Pythonic
APIs
Anthony Baxter

anthonybaxter@gmail.com

@anthonybaxter

Sunday, November 21, 2010

notes

mailto:arb@google.com
mailto:arb@google.com
mailto:arb@google.com
mailto:arb@google.com
mailto:arb@google.com
mailto:arb@google.com
mailto:arb@google.com
mailto:arb@google.com

Some good and bad
examples

Sunday, November 21, 2010

and speaking of bad examples...

O Hai!

Sunday, November 21, 2010

started with python ‘92
or ‘93

Sunday, November 21, 2010

I forget which. I do recall that back then, Guido wrote a webcrawler in Python that crawled the
entire web, and crashed a lot of machines.

Sunday, November 21, 2010

I’ve written a lot of
Python

Sunday, November 21, 2010

and used a lot more

Sunday, November 21, 2010

Python is like a virus

Sunday, November 21, 2010

Python gets into your brain and makes you annoyed at other languages. And like all good
viruses, it makes you want to spread it.

inevitably

Sunday, November 21, 2010

Sunday, November 21, 2010

did that for 5 years

Sunday, November 21, 2010

primary language from 1996-2007, now have to do Java and C++ as well, boo

Then Google ate my
free time

Sunday, November 21, 2010

some APIs

Sunday, November 21, 2010

On of the ways of spreading Python is to make it possible to do new stuff, simply.
I’ve built far too many APIs and libraries for Python. Mostly I build them to get something
done, then eventually get bored of them and hand them on or move on.
Learn from my mistakes.

miniSQL

Sunday, November 21, 2010

mid 90s - first of the small open embedded databases, by David Hughes. wrapped it in
custom C code wrapper. Eventually taken over by Mark Shuttleworth, who used it at Thawte.

snmpy

Sunday, November 21, 2010

wrapper around UCD-SNMP. wanted to manage some small ethernet switches. subsequently,
used it at a large ISP to collect stats from thousands of interfaces for billing purposes.
got a bit silly eventually, I used it as a backend to gadfly so I could do SQL-style queries
across network devices and interfaces.

shtoom

Sunday, November 21, 2010

voice over IP

lots of other stuff...

Sunday, November 21, 2010

whenever I come across a new protocol, I spend some time implementing it. sometimes I
even get around to releasing that code.

So you’re building an
API

Sunday, November 21, 2010

Why would you do
this?

Sunday, November 21, 2010

Wrap existing code

Sunday, November 21, 2010

New code to achieve a
purpose

Sunday, November 21, 2010

Generalise existing
code

Sunday, November 21, 2010

Learning

Sunday, November 21, 2010

I’ve done a lot of this - the easiest way I find to understand something new, especially a
network protocol, is to implement it.

for the hell of it

Sunday, November 21, 2010

sheer
bloodymindedness

Sunday, November 21, 2010

shtoom was originally written for one reason. I got sick of hearing Python called a “scripting
language”. So I thought implement voice over IP in it and write a talk, just to say “shut up”

“Scripting Language, My
Arse”

Sunday, November 21, 2010

I kept working on it, adding all sorts of stuff to it. It kinda grew out of control.

codecs

rtp

audio

UPnP

tftpIVRs

UIs tk
qt

gnome
wx

cocoa
text
...

STUN

SIP

ulaw
gsm06.10

G.72x
speex

...

Sunday, November 21, 2010

by the time I got bored, I had implemented about 5 different audio capture/playback
interfaces, and 7 or 8 different UI layers. As well as about 4 different firewall avoidance
mechanisms. It worked on Unixes, Windows, the Mac, and sometimes even Gentoo.

~ 25K LOC

Sunday, November 21, 2010

“Pythonic”

Sunday, November 21, 2010

Guido is Watching You
Sunday, November 21, 2010

Guido has been successful as BDFL because of his excellent taste.

“I know it when I see it”
Justice Potter Stewart,

Jacobellis v. Ohio 378 U.S. 184 (1964)

Sunday, November 21, 2010

of course he was talking about obscenity, but the principle remains

What makes an API
Pythonic?

Sunday, November 21, 2010

principle of least
surprise

Sunday, November 21, 2010

Sunday, November 21, 2010

principle of least
surprise

Sunday, November 21, 2010

it should feel safe and comfortable and familiar to a Python programmer, even if they’ve
never come across it before.

Zen of Python

Sunday, November 21, 2010

when designing an API, bear the words of Sensei Tim Peters in mind. Type ‘import this’ if you
haven’t already

“Python fits in my
brain”

Sunday, November 21, 2010

Your API should also fit in my brain. I shouldn’t have to keep referring to the docs. Also, if I
learn one bit of the API, it should be consistent enough that the rest of the API naturally
follows.

Python isn’t always
Pythonic

Sunday, November 21, 2010

map, filter, reduce

Sunday, November 21, 2010

we fixed that. list comprehensions for map and filter. reduce, we have sum(). map(None, foo),
we have zip()

print >> fp

Sunday, November 21, 2010

lambda

Sunday, November 21, 2010

Common mistkaes

Sunday, November 21, 2010

Over-ambition

Sunday, November 21, 2010

I’m gonna TAKE OVER THE WORLD

“Frameworks”

Sunday, November 21, 2010

Why don’t I like them?

Sunday, November 21, 2010

I just want one piece

Sunday, November 21, 2010

e.g.

Sunday, November 21, 2010

twisted

great stuff

but...

Sunday, November 21, 2010

twisted has a wide variety of protocol implementations, often of high quality. but interfacing
with them means buying into the whole framework in most cases. and there’s often semi-
heroic efforts needed to interface with other APIs that weren’t designed for twisted.
Twisted evangelists will probably disagree with me.

Frameworks
==

do it my way

Sunday, November 21, 2010

I want to be able to pick up an individual piece of code or a library, and run with it. I don’t
want to have to restructure my entire application around a new framework.
This also often leads to a situation where I’m forced to pick a framework at the start of
coding, before I’ve figured out how exactly I want to achieve my goal.

Mistaik #2:
Reinventing the wheel

Sunday, November 21, 2010

We don’t need:

Sunday, November 21, 2010

another web
framework

Sunday, November 21, 2010

every time you write a
new web framework,

god kills a kitten
please, think of the kittens

Sunday, November 21, 2010

another #!*$^#?@&
templating language
noooo!

Sunday, November 21, 2010

you make KITTY SAD.

another interface for
postgresql or mysql

Sunday, November 21, 2010

I counted at least 6 PG adapters on pypi, and a similar number of mysql adapters.

makes no-one’s life
better

Sunday, November 21, 2010

it’s harder for python developers.
it’s harder for you (less users).

#3: complexity

Sunday, November 21, 2010

Steep learning curve

Sunday, November 21, 2010

Sunday, November 21, 2010

this is a ‘hello world’ for pysnmp. OMG.
ideally you should be able to play at the interactive interpreter.

#4: being too clever

Sunday, November 21, 2010

back to snmpy...

Sunday, November 21, 2010

SNMP OIDs

Sunday, November 21, 2010

interfaces.ifTable.ifEntry.ifIndex.1 = 1
interfaces.ifTable.ifEntry.ifDescr.1 = "Ethernet"
interfaces.ifTable.ifEntry.ifType.1 = ethernet-csmacd(6)
interfaces.ifTable.ifEntry.ifMtu.1 = 1536
interfaces.ifTable.ifEntry.ifSpeed.1 = Gauge: 10000000

woot - __getattr__!

Sunday, November 21, 2010

so I thought using getattr would be cute. but there’s a problem...

.iso.org.dod.internet.mgmt.mib-2.system.sysUpTime

Sunday, November 21, 2010

here’s a full OID. where is the problem as far as using getattr?

.iso.org.dod.internet.mgmt.mib-2.system.sysUpTime

Sunday, November 21, 2010

impedence mismatch

OID names != python
identifiers

Sunday, November 21, 2010

.iso.org.dod.internet.mgmt[‘mib-2’].system.sysUpTime

Sunday, November 21, 2010

suddenly things got nasty

worse yet

Sunday, November 21, 2010

overloading attribute lookup meant all sorts of horrible and strange errors would pop up.
they made debugging awful.

cleverness will chew off
your face

Sunday, November 21, 2010

cleverness will bite
your users

Sunday, November 21, 2010

similarly

Sunday, November 21, 2010

leave import alone!!!!

Sunday, November 21, 2010

please don’t play games with module import.
yes, you can write something that will fetch modules from a URL. But you shouldn’t.
if you’ve ever been bitten by this, you know how utterly irritating it can be
multiple custom importers make everyone sad

and don’t monkeypatch
the stdlib

Sunday, November 21, 2010

oh noes!

Sunday, November 21, 2010

patching the stdlib summons hideous demons that will eat your soul.

Sunday, November 21, 2010

so don’t be too clever
or cute

Sunday, November 21, 2010

making things that “act like a list, sort of” is all well and good until you discover that it’s not
quite list-like enough.

just because you can
abuse ‘with’ doesn’t
mean you should

Sunday, November 21, 2010

Sunday, November 21, 2010

I question the use of the phrase “reusable components” there.

what you do in the
privacy of your own

codebase is your own
business

Sunday, November 21, 2010

don’t make it mine...

Sunday, November 21, 2010

Next big mistake

Sunday, November 21, 2010

Writing in the wrong
language

Sunday, November 21, 2010

you can tell

Sunday, November 21, 2010

after a while, you can almost spot someone who’s not a python programmer from their code.
at google, I work with a bunch of super-smart people. but often Java or C++ has polluted
their brains.

don’t port APIs directly

Sunday, November 21, 2010

unfortunately, the stdlib has a few great examples of how and why this is a terrible terrible
idea:

don’t believe me?

Sunday, November 21, 2010

import xml.dom

Sunday, November 21, 2010

a direct port of the “standard” DOM APIs.

Sunday, November 21, 2010

Even Javascript programmers don’t like working with the DOM - this is why jquery &c are
winning out. it’s an awful awful API to work with. use elementree instead if at all possible.

import logging

Sunday, November 21, 2010

logging was a direct port of Java’s log4j. I just want to log something to a file. Why should
this be so hard? Fortunately, logging now has a .basicConfig() function to do this, but it
really, really shouldn’t be so hard. It’s also huge and complicated. I’d rather use print.

import unittest

Sunday, November 21, 2010

a direct port of junit, initially. it’s getting better. but pretty much every major project ends up
fixing it.
consider also py.test. I plan on trying to open source google’s wrapper around unittest this
year.

Python is not C/C++

Sunday, November 21, 2010

...but makes a good
wrapper around them

Sunday, November 21, 2010

important:

Sunday, November 21, 2010

provide higher level
wrappers

Sunday, November 21, 2010

At Google, much of the lower level magic is exposed via SWIG. This is a blessing and a curse.
A blessing, because we *have* the lower level magic exposed in Python. A curse, because the
SWIG interfaces are often extremely unintuitive to a Python programmer, and can be a bit of a
nightmare.

recommended:

Sunday, November 21, 2010

ctypes
SWIG
pyrex

Sunday, November 21, 2010

maintainability
readability

Sunday, November 21, 2010

cross platform

Sunday, November 21, 2010

compiling C extensions on Windows is one of the worst things you can do to a unix
developer. ctypes makes this pain go away.

classic example:

Sunday, November 21, 2010

pygame vs pyglet

Sunday, November 21, 2010

pygame is custom wrappers around SDL.
pyglet is ctypes around opengl
I understand pygame reloaded has made more efforts here to fix this.

more learnings from
pyglet

Sunday, November 21, 2010

sorry. I work for a large corporation that also has marketing people. these words slip in
occasionally.

wrap the lower level
code

Sunday, November 21, 2010

provide higher-level
interfaces

Sunday, November 21, 2010

we’re not writing C code for a reason. if you have to do all the same calls, and all you’re
saving yourself is the compile cycle, you’re missing out.
additionally, providing the higher level interfaces lets you maintain some level of sane
compatibility when your underlying libraries change under you.

Python is really not Java

Sunday, November 21, 2010

getters and setters?
seriously?

Sunday, November 21, 2010

dozens and dozens of
classes to do anything

Sunday, November 21, 2010

method overloading

Sunday, November 21, 2010

I’ve seen this too often - a method that can take a Foo, or a Bar, or a Baz, and does different
things based on them.

@classmethod
@staticmethod

Sunday, November 21, 2010

There’s only a couple of places to use a classmethod - alternate constructors. There’s almost
never a use for a staticmethod.

How to design an API

Sunday, November 21, 2010

this is all from personal experience, of course, and from watching other people.

Have a use-case

Sunday, November 21, 2010

better:

Sunday, November 21, 2010

have multiple use cases

Sunday, November 21, 2010

think about how it will
be used

Sunday, November 21, 2010

yes, including unicode

_ = str.upper

Sunday, November 21, 2010

start off:
solve one problem

Sunday, November 21, 2010

start off simple

Sunday, November 21, 2010

don’t overdesign

Sunday, November 21, 2010

YAGNI

Sunday, November 21, 2010

what worked? what
didn’t?

Sunday, November 21, 2010

now solve a second
problem

Sunday, November 21, 2010

or ask a friend to try

Sunday, November 21, 2010

your first couple of users are the equivalent of doing user testing. do they get what you are
trying to achieve?

be ruthless early on
with refactoring

Sunday, November 21, 2010

it’s much much harder once you have users.

build on what’s there

Sunday, November 21, 2010

lists, dicts, sets

Sunday, November 21, 2010

go go duck typing

Sunday, November 21, 2010

more on ducks.
be sensible.

Sunday, November 21, 2010

ducks are widely known for their common sense.
but see earlier, be rational about duck typing. don’t do it for the hell of it.
caches - dict.
result sets - iter
there is almost no case for pretending to be a string, or a tuple, or an int

getattr and setattr

Sunday, November 21, 2010

just say no.

start with a bunch of
functions

Sunday, November 21, 2010

don’t over-engineer

Sunday, November 21, 2010

aggregate common
functionality

Sunday, November 21, 2010

think about testing

Sunday, November 21, 2010

I learned this the hard
way

Sunday, November 21, 2010

SIP is incredibly
complex

Sunday, November 21, 2010

shtoom’s SIP support:
one long spike

Sunday, November 21, 2010

I implemented SIP based on reading packets and making it work, rather than implementing
the hundreds and hundreds of pages of RFCs. Bad mistake.

Sunday, November 21, 2010

SIP is incredibly complex. core RFC is 269 pages.
lack of testing killed me over and over again.
lack of testability killed me over and over again - it eventually killed my will to live and/or
work on shtoom any more.

testable APIs

Sunday, November 21, 2010

an interesting discovery

Sunday, November 21, 2010

testing is good

Sunday, November 21, 2010

motherhood, apple pie,
american flag, all that

stuff

Sunday, November 21, 2010

but it turns out

Sunday, November 21, 2010

testing actually makes
an API better

Sunday, November 21, 2010

and not just how you might think...

testing using mocks

Sunday, November 21, 2010

there’s a bunch of mock libraries - I like “mox”, but pick and choose what works for you.

python uses duck-
typing

Sunday, November 21, 2010

duck-typing + testable
APIs = :-)

Sunday, November 21, 2010

if your code is in small, testable pieces - pieces that rely on something shaped like a
particular type of duck, people can find new and interesting ways to use it.

people will find new
ways to use your code

Sunday, November 21, 2010

oh and btw,

Sunday, November 21, 2010

don’t rely on _methods

Sunday, November 21, 2010

people are bastards. you can’t try and mark part of your API “off limits”
python’s standard library had this problem at multiple points - to get some stuff done, you
had to override an _ prefixed method.

and __methods are
right out

Sunday, November 21, 2010

double underscore is a namespace mangling thing. it doesn’t protect you. it just means users
who just want to do stuff have to mess about a little. I rate __ methods as one of Python’s
bigger mistakes.

all of your API is public

Sunday, November 21, 2010

we got burnt on this in appengine - we had _methods for internal implementation details.
People used these, overrode these and generally made it impossible for us to change them.
you can say “don’t do this” but people will.

Python’s ethos is we’re
all “consenting adults”

Sunday, November 21, 2010

sometimes it’s best not
to look too closely

Sunday, November 21, 2010

the best you can do is
say

Sunday, November 21, 2010

Sunday, November 21, 2010

How to make your API
popular

Sunday, November 21, 2010

Documentation

Sunday, November 21, 2010

I can’t emphasise enough how important this is. I will actually make choices on an lib based
on the quality of the docs.

anything is better than
nothing

Sunday, November 21, 2010

even just generated
from docstrings

Sunday, November 21, 2010

this will of course encourage you to do docstrings.
but the main thing is to make sure your docs aren’t just a reference.
logging used to have that. it didn’t answer the “HOW DO I ACTUALLY USE THIS THING!?1”

Examples

Sunday, November 21, 2010

You should have a few hello world type examples - over time, build these up. If you are
lucky, people will contribute more.

Frequent releases

Sunday, November 21, 2010

more importantly, make it clear what’s going on
this is something I’ve done badly

Frequent, or at least
regular, releases.

Sunday, November 21, 2010

Frequent, or at least
some, releases.

Sunday, November 21, 2010

“just build from the revision control” isn’t a great plan.

Be open to feedback

Sunday, November 21, 2010

... and patches. as soon as you release code, suddenly you have more users. They can think
of use cases you’ve never, ever thought of. Don’t be precious about your code or your library.
especially in the early days...

Think about stability

Sunday, November 21, 2010

once your library gets users, they want their apps to keep working. This becomes harder once
you have paying users - your entire API becomes somewhat frozen.

Python releases

linux kernel

Sunday, November 21, 2010

plan for extensibility

Sunday, November 21, 2010

your users will find new ways to use your library than you could have ever imagined.

finally:

Sunday, November 21, 2010

what happens if you
don’t succeed?

Sunday, November 21, 2010

nothing bad

Sunday, November 21, 2010

this goes back to why you wrote an API in the first place.
assuming you haven’t based a business model on a library or API you’re releasing...

the good ideas will live
on

Sunday, November 21, 2010

bits of shtoom turned up in unexpected places.
UPnP was based on a module called ‘soapsucks’ which turned up in a number of other
projects, although they usually renamed it.

and you might be able
to get a talk or two out

of it

Sunday, November 21, 2010

finally...

Sunday, November 21, 2010

the most important
thing about API design

Sunday, November 21, 2010

no matter what you
think

Sunday, November 21, 2010

no matter how much
you plan

Sunday, November 21, 2010

expect the unexpected

Sunday, November 21, 2010

Sunday, November 21, 2010

