
Designing to Scale
The Story of ShootQ

Jonathan LaCour - CTO
jonathan@shootq.com

Friday, February 19, 2010

mailto:jonathan@shootq.com
mailto:jonathan@shootq.com

Friday, February 19, 2010

A Bit of History

Friday, February 19, 2010

Friday, February 19, 2010

Friday, February 19, 2010

Friday, February 19, 2010

Organizational Nightmare

Friday, February 19, 2010

Organizational Nightmare

Friday, February 19, 2010

Friday, February 19, 2010

Andrew Begs

Friday, February 19, 2010

Andrew Begs

Friday, February 19, 2010

Andrew Begs
“Can you help me?”

Friday, February 19, 2010

My Response...

Friday, February 19, 2010

My Response...
Buy a book!

Friday, February 19, 2010

My Response...
Buy a book!

Friday, February 19, 2010

EOS is Born!

Friday, February 19, 2010

Four years later...

Friday, February 19, 2010

Four years later...

.... other people want to use EOS.

Friday, February 19, 2010

Four years later...

.... other people want to use EOS.

They are even willing to pay for it!

Friday, February 19, 2010

Friday, February 19, 2010

Eeeexcellent.

Friday, February 19, 2010

ONE PROBLEM

Friday, February 19, 2010

ONE PROBLEM
the code is...

Friday, February 19, 2010

Friday, February 19, 2010

Friday, February 19, 2010

Friday, February 19, 2010

Python to the rescue!

Friday, February 19, 2010

Python to the rescue!
Time to start over....

Friday, February 19, 2010

Selecting our Tools

Friday, February 19, 2010

Selecting our Tools

Friday, February 19, 2010

Selecting our Tools

• TurboGears 2.0

• Object-Dispatch

• WSGI at the core

• Genshi and Mako

Friday, February 19, 2010

Selecting our Tools

• TurboGears 2.0

• Object-Dispatch

• WSGI at the core

• Genshi and Mako

• SQLAlchemy / Elixir

• Easy to use

• Handles Complex Data

• Active Community

Friday, February 19, 2010

Scaling Up

Friday, February 19, 2010

What is Scaling?

Friday, February 19, 2010

What is Scaling?

Vertical Scaling

Friday, February 19, 2010

What is Scaling?

Vertical Scaling Horizontal Scaling

Friday, February 19, 2010

What is Scaling?

• Adding resources

• CPU, RAM, I/O

• Single server

• Maximizing utilization of
resources

Vertical Scaling Horizontal Scaling

Friday, February 19, 2010

What is Scaling?

• Adding resources

• CPU, RAM, I/O

• Single server

• Maximizing utilization of
resources

Vertical Scaling

• Adding servers

• Spreading load

• Separation of concerns

• Limiting resource
contention

Horizontal Scaling

Friday, February 19, 2010

Vertical Scaling

Friday, February 19, 2010

Naive Infrastructure

• ShootQ 1.0 (PHP) used this
infrastructure

• Single server

• Application in charge

• Talks to database

• Serves static files

Browser

Application

Static FilesMySQL

Friday, February 19, 2010

Problem: Static Files

Friday, February 19, 2010

Static Files

Friday, February 19, 2010

Static Files

• App is for dynamic content, not static content

Friday, February 19, 2010

Static Files

• App is for dynamic content, not static content

• Web servers are designed for this job

Friday, February 19, 2010

Static Files

• App is for dynamic content, not static content

• Web servers are designed for this job

• Options abound!

• Apache

• Lighttpd

• Many many more...

Friday, February 19, 2010

Friday, February 19, 2010

“engine ex”

Friday, February 19, 2010

Improved Infrastructure

Browser

Application Static Files

MySQL

NGinx

Friday, February 19, 2010

Side Benefits – Cache and GZip

• Nginx Cache Headers

• Force sixty day cache

• We add a “stamp” to URIs

• Forces fetch when files
are updated

• Content is also GZip’d

Friday, February 19, 2010

Problem: Many Requests

Friday, February 19, 2010

Threaded WSGI Server

• ShootQ runs inside CherryPy WSGI Server

• Threaded server

• Python threads hampered by GIL

• How to take advantage of multiple cores?

Friday, February 19, 2010

NGinx Clusters

• Run multiple instances of your application

• NGinx will proxy to a “cluster” of instances

• Requests divided between instances

• This is essentially load balancing

Friday, February 19, 2010

Clustered Infrastructure

Browser

App Static Files

MySQL

NGinx

App App App

Friday, February 19, 2010

Problem: Adding Resources

Friday, February 19, 2010

Adding Resources

• Adding CPU, Memory, Disk requires a reboot

• Purchasing hardware not in our budget

• Prefer to focus on the software, not the infrastructure

Friday, February 19, 2010

Deploying in the Cloud

• Joyent is a cloud computing provider

Friday, February 19, 2010

Deploying in the Cloud

• Joyent is a cloud computing provider

• Virtualized servers at low cost

Friday, February 19, 2010

Deploying in the Cloud

• Joyent is a cloud computing provider

• Virtualized servers at low cost

• Excellent performance

Friday, February 19, 2010

Deploying in the Cloud

• Joyent is a cloud computing provider

• Virtualized servers at low cost

• Excellent performance

• Adding resources as simple as filing a ticket!

• Often doesn’t require a reboot

Friday, February 19, 2010

Horizontal Scaling

Friday, February 19, 2010

Problem: Separation of
Concerns

Friday, February 19, 2010

Separation of Concerns

• Application, database, services, and website on same server

• Competition for resources

Friday, February 19, 2010

Separation of Concerns

• Application, database, services, and website on same server

• Competition for resources

• Virtualized servers are cheap – split them out!

• Application “node”

• Database

• Services – email, billing, other daemons.

Friday, February 19, 2010

Improved Infrastructure

Browser

App Static Files

MySQL

NGinx

App App App

Services

Friday, February 19, 2010

Problem: Scaling App
Horizontally

Friday, February 19, 2010

Scaling App Horizontally

• Multiple servers presents several problems:

Friday, February 19, 2010

Scaling App Horizontally

• Multiple servers presents several problems:

• How do we divide up requests?

Friday, February 19, 2010

Scaling App Horizontally

• Multiple servers presents several problems:

• How do we divide up requests?

• How to handle application session state?

Friday, February 19, 2010

Scaling App Horizontally

• Multiple servers presents several problems:

• How do we divide up requests?

• How to handle application session state?

• Often stored in-memory or on disk.

Friday, February 19, 2010

Hardware Load Balancer

• Joyent hardware load balancer (BigIP)

• Similar to Nginx, but in hardware

• Load balances requests to a cluster of “nodes”

• New nodes can be added on-demand

• Added benefit: SSL acceleration in hardware

Friday, February 19, 2010

Cookie-Backed Sessions

• TurboGears sessions handled by “beaker”

• Beaker supports cookie-backed sessions

• Encrypted, signed, secure

• State lives in browser

• Allows application to be “stateless”

Friday, February 19, 2010

Redundant Infrastructure

Browser

App Static
Files

MySQL

NGinx

App App

Services

Hardware Load Balancer

App Static
Files

NGinx

App App

Friday, February 19, 2010

Benefits of Multiple Nodes

• Application redundancy

• One node fails, the second automatically handles requests

Friday, February 19, 2010

Benefits of Multiple Nodes

• Application redundancy

• One node fails, the second automatically handles requests

• Deployment causes less downtime

• Rolling updates can be applied

• Minimal disruption for users

Friday, February 19, 2010

Problem: Scaling the Database

Friday, February 19, 2010

Scaling the Database

• ShootQ is heavily read-based

• Most requests do not modify data

• Database can be scaled vertically by adding resources

• What happens when we run out of resources?

Friday, February 19, 2010

MySQL Replication

• MySQL provides “master-slave”
replication

• Multiple instances of your database

• Master – read/write

• Slaves – read-only copies

Friday, February 19, 2010

MySQL Replication

• MySQL provides “master-slave”
replication

• Multiple instances of your database

• Master – read/write

• Slaves – read-only copies

Master

Slave Slave Slave

READS

WRITES

Friday, February 19, 2010

Splitting Reads and Writes

• All SQL writes must be sent to the Master

• How can we split reads and writes?

Friday, February 19, 2010

Splitting Reads and Writes

• All SQL writes must be sent to the Master

• How can we split reads and writes?

• Piggyback on top of HTTP

• GET and HEAD are defined as “idempotent”

• POST, PUT, and DELETE can have side-effects

Friday, February 19, 2010

Splitting Reads and Writes

• ShootQ Database WSGI “middleware”

• GET and HEAD are sent to the MySQL Slave

Friday, February 19, 2010

Splitting Reads and Writes

• ShootQ Database WSGI “middleware”

• GET and HEAD are sent to the MySQL Slave

• POST, PUT, and DELETE are sent to the MySQL Master

Friday, February 19, 2010

Splitting Reads and Writes

• ShootQ Database WSGI “middleware”

• GET and HEAD are sent to the MySQL Slave

• POST, PUT, and DELETE are sent to the MySQL Master

• Requests to the master are also wrapped in a transaction

Friday, February 19, 2010

Splitting Reads and Writes

• ShootQ Database WSGI “middleware”

• GET and HEAD are sent to the MySQL Slave

• POST, PUT, and DELETE are sent to the MySQL Master

• Requests to the master are also wrapped in a transaction

• Errors cause transaction to be rolled back automatically

Friday, February 19, 2010

Slave Lag

• Slave can “lag” behind Master

• Writes followed by reads

• Solutions:

• Decorator and Utility
Function

• WSGI middleware

Friday, February 19, 2010

Slave Lag

• Slave can “lag” behind Master

• Writes followed by reads

• Solutions:

• Decorator and Utility
Function

• WSGI middleware

Friday, February 19, 2010

Final Infrastructure

Browser

App Static
Files

Master

NGinx

App App

Services

Hardware Load Balancer

App Static
Files

NGinx

App App

Slaves

Friday, February 19, 2010

Summary

Friday, February 19, 2010

Summary
• Select the right tools

• Comfort

• Applicability to task

Friday, February 19, 2010

Summary
• Select the right tools

• Comfort

• Applicability to task

• Scale vertically

• Multi-process your application

• Serve static content from a web
or proxy server

• Force static content to cache

Friday, February 19, 2010

Summary
• Select the right tools

• Comfort

• Applicability to task

• Scale vertically

• Multi-process your application

• Serve static content from a web
or proxy server

• Force static content to cache

Friday, February 19, 2010

Summary
• Select the right tools

• Comfort

• Applicability to task

• Scale vertically

• Multi-process your application

• Serve static content from a web
or proxy server

• Force static content to cache

• Scale horizontally

• Separate concerns: database,
application, services

• Push session state to client-side

• Employ a hardware or software
load balancer to support multiple
application servers

• Make use of database replication

Friday, February 19, 2010

Summary
• Select the right tools

• Comfort

• Applicability to task

• Scale vertically

• Multi-process your application

• Serve static content from a web
or proxy server

• Force static content to cache

• Scale horizontally

• Separate concerns: database,
application, services

• Push session state to client-side

• Employ a hardware or software
load balancer to support multiple
application servers

• Make use of database replication

Friday, February 19, 2010

Summary
• Select the right tools

• Comfort

• Applicability to task

• Scale vertically

• Multi-process your application

• Serve static content from a web
or proxy server

• Force static content to cache

• Scale horizontally

• Separate concerns: database,
application, services

• Push session state to client-side

• Employ a hardware or software
load balancer to support multiple
application servers

• Make use of database replication

• Deploy into a cloud

Friday, February 19, 2010

Friday, February 19, 2010

cleverdevil.org/train

Friday, February 19, 2010

http://cleverdevil.org/train
http://cleverdevil.org/train

