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A Bit of History
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Organizational Nightmare
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Andrew Begs
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Andrew Begs
“Can you help me?”
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My Response...
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My Response...
Buy a book!
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EOS is Born!
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Four years later...
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Four years later...

.... other people want to use EOS.
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Four years later...

.... other people want to use EOS.

They are even willing to pay for it!
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Eeeexcellent.
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ONE PROBLEM
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ONE PROBLEM
the code is...
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Python to the rescue!
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Python to the rescue!
Time to start over....
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Selecting our Tools
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Selecting our Tools

• TurboGears 2.0

• Object-Dispatch

• WSGI at the core

• Genshi and Mako
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Selecting our Tools

• TurboGears 2.0

• Object-Dispatch

• WSGI at the core

• Genshi and Mako

• SQLAlchemy / Elixir

• Easy to use

• Handles Complex Data

• Active Community
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Scaling Up
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What is Scaling?
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What is Scaling?

Vertical Scaling
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What is Scaling?

• Adding resources

• CPU, RAM, I/O

• Single server

• Maximizing utilization of 
resources

Vertical Scaling Horizontal Scaling
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What is Scaling?

• Adding resources

• CPU, RAM, I/O

• Single server

• Maximizing utilization of 
resources

Vertical Scaling

• Adding servers

• Spreading load

• Separation of concerns

• Limiting resource 
contention

Horizontal Scaling
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Vertical Scaling
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Naive Infrastructure

• ShootQ 1.0 (PHP) used this 
infrastructure

• Single server

• Application in charge

• Talks to database

• Serves static files

Browser

Application

Static FilesMySQL
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Problem: Static Files
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Static Files
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Static Files

• App is for dynamic content, not static content
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Static Files

• App is for dynamic content, not static content

• Web servers are designed for this job
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Static Files

• App is for dynamic content, not static content

• Web servers are designed for this job

• Options abound!

• Apache

• Lighttpd

• Many many more...
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“engine ex”
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Improved Infrastructure

Browser

Application Static Files

MySQL

NGinx
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Side Benefits – Cache and GZip

• Nginx Cache Headers

• Force sixty day cache

• We add a “stamp” to URIs

• Forces fetch when files 
are updated

• Content is also GZip’d
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Problem: Many Requests
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Threaded WSGI Server

• ShootQ runs inside CherryPy WSGI Server

• Threaded server

• Python threads hampered by GIL

• How to take advantage of multiple cores?
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NGinx Clusters

• Run multiple instances of your application

• NGinx will proxy to a “cluster” of instances

• Requests divided between instances

• This is essentially load balancing
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Clustered Infrastructure

Browser

App Static Files

MySQL

NGinx

App App App
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Problem: Adding Resources
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Adding Resources

• Adding CPU, Memory, Disk requires a reboot

• Purchasing hardware not in our budget

• Prefer to focus on the software, not the infrastructure
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Deploying in the Cloud

• Joyent is a cloud computing provider
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• Joyent is a cloud computing provider

• Virtualized servers at low cost
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• Excellent performance
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Deploying in the Cloud

• Joyent is a cloud computing provider

• Virtualized servers at low cost

• Excellent performance

• Adding resources as simple as filing a ticket!

• Often doesn’t require a reboot

Friday, February 19, 2010



Horizontal Scaling
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Problem: Separation of 
Concerns
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Separation of Concerns

• Application, database, services, and website on same server

• Competition for resources
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Separation of Concerns

• Application, database, services, and website on same server

• Competition for resources

• Virtualized servers are cheap – split them out!

• Application “node”

• Database

• Services – email, billing, other daemons.
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Improved Infrastructure

Browser

App Static Files

MySQL

NGinx

App App App

Services
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Problem: Scaling App 
Horizontally
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Scaling App Horizontally

• Multiple servers presents several problems:
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• Multiple servers presents several problems:

• How do we divide up requests?
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Scaling App Horizontally

• Multiple servers presents several problems:

• How do we divide up requests?

• How to handle application session state?

Friday, February 19, 2010



Scaling App Horizontally

• Multiple servers presents several problems:

• How do we divide up requests?

• How to handle application session state?

• Often stored in-memory or on disk.
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Hardware Load Balancer

• Joyent hardware load balancer (BigIP)

• Similar to Nginx, but in hardware

• Load balances requests to a cluster of “nodes”

• New nodes can be added on-demand

• Added benefit: SSL acceleration in hardware
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Cookie-Backed Sessions

• TurboGears sessions handled by “beaker”

• Beaker supports cookie-backed sessions

• Encrypted, signed, secure

• State lives in browser

• Allows application to be “stateless”
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Redundant Infrastructure

Browser

App Static 
Files

MySQL

NGinx

App App

Services

Hardware Load Balancer

App Static 
Files

NGinx

App App
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Benefits of Multiple Nodes

• Application redundancy

• One node fails, the second automatically handles requests
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Benefits of Multiple Nodes

• Application redundancy

• One node fails, the second automatically handles requests

• Deployment causes less downtime

• Rolling updates can be applied

• Minimal disruption for users
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Problem: Scaling the Database
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Scaling the Database

• ShootQ is heavily read-based

• Most requests do not modify data

• Database can be scaled vertically by adding resources

• What happens when we run out of resources?
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MySQL Replication

• MySQL provides “master-slave” 
replication

• Multiple instances of your database

• Master – read/write

• Slaves – read-only copies
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MySQL Replication

• MySQL provides “master-slave” 
replication

• Multiple instances of your database

• Master – read/write

• Slaves – read-only copies

Master

Slave Slave Slave

READS

WRITES
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Splitting Reads and Writes

• All SQL writes must be sent to the Master

• How can we split reads and writes?
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Splitting Reads and Writes

• All SQL writes must be sent to the Master

• How can we split reads and writes?

• Piggyback on top of HTTP

• GET and HEAD are defined as “idempotent”

• POST, PUT, and DELETE can have side-effects
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Splitting Reads and Writes

• ShootQ Database WSGI “middleware”

• GET and HEAD are sent to the MySQL Slave
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Splitting Reads and Writes

• ShootQ Database WSGI “middleware”

• GET and HEAD are sent to the MySQL Slave
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• Requests to the master are also wrapped in a transaction
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Splitting Reads and Writes

• ShootQ Database WSGI “middleware”

• GET and HEAD are sent to the MySQL Slave

• POST, PUT, and DELETE are sent to the MySQL Master

• Requests to the master are also wrapped in a transaction

• Errors cause transaction to be rolled back automatically
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Slave Lag

• Slave can “lag” behind Master

• Writes followed by reads

• Solutions:

• Decorator and Utility 
Function

• WSGI middleware
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Slave Lag

• Slave can “lag” behind Master

• Writes followed by reads

• Solutions:

• Decorator and Utility 
Function

• WSGI middleware
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Final Infrastructure

Browser

App Static 
Files

Master

NGinx

App App

Services

Hardware Load Balancer

App Static 
Files

NGinx

App App

Slaves
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Summary
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Summary
• Select the right tools

• Comfort

• Applicability to task
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Summary
• Select the right tools

• Comfort

• Applicability to task

• Scale vertically

• Multi-process your application

• Serve static content from a web 
or proxy server

• Force static content to cache

• Scale horizontally

• Separate concerns: database, 
application, services

• Push session state to client-side

• Employ a hardware or software 
load balancer to support multiple 
application servers

• Make use of database replication

• Deploy into a cloud
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cleverdevil.org/train
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