
Persistent Graphs in
Python with Neo4j

Tobias Ivarsson
Hacker @ Neo Technology

twitter: @thobe / #neo4j
email: tobias@neotechnology.com
web: http://www.neo4j.org/
web: http://www.thobe.org/

Sunday, February 21, 2010

http://twitter.com/thobe
http://twitter.com/thobe
http://search.twitter.com/search?q=neo4j
http://search.twitter.com/search?q=neo4j
mailto:tobias.ivarsson@neotechnology.com?subject=
mailto:tobias.ivarsson@neotechnology.com?subject=
http://www.neo4j.org
http://www.neo4j.org
http://www.thobe.org
http://www.thobe.org

2

username fullname registration tutorials payment

guido Guido van Rossum null yes 0

thobe Tobias Ivarsson 2009-12-12 no 300

joe John Doe 2010-02-05 yes 700

...

Attendees
We all know the
relational model.

It has been predominant
for a long time.

Sunday, February 21, 2010

3

username fullname registration tutorials payment

guido Guido van Rossum null yes 0

thobe Tobias Ivarsson 2009-12-12 no 300

joe John Doe 2010-02-05 yes 700

...

Attendees

username latitude longitude title publish

thobe 55°36'47.70"N 12°58'34.50"E Malmö yes

joe 37°49'36.00"N 122°25'22.00"W San
Francisco

no

...

Location

The relational model has
a few problems, such as:
•poor support for sparse
data
•modifying the data
model is almost
exclusively done through
adding tables

Sunday, February 21, 2010

4

username fullname registration tutorials payment

guido Guido van Rossum null yes 0

thobe Tobias Ivarsson 2009-12-12 no 300

joe John Doe 2010-02-05 yes 700

...

Attendees

username latitude longitude title publish

thobe 55°36'47.70"N 12°58'34.50"E Malmö yes

joe 37°49'36.00"N 122°25'22.00"W San
Francisco

no

...

Location

id title time room ...

...

...

Sessions

session user

... ...

... ...

Session attendance

... ...

... ...

... ...

More complication...

... ...

... ...

... ...

... ...

... ...

... ...

... ...

... ...

... ...

After a while, modeling
complex relationships
leads to complicated
schemas

Sunday, February 21, 2010

5

A number of companies
have realized that the
relational model is
insufficient and are
working on alternative
database solutions.

Sunday, February 21, 2010

6

192.168.0.14

192.168.0.15

192.168.0.21

192.168.0.16

Most focus on scaling to large numbers

Sunday, February 21, 2010

7

Graph Databases focuses on structure of data

Sunday, February 21, 2010

Positioning w.r.t. other NOSQL DBs

8

Size

Complexity

Key/Value stores

Bigtable clones

Document databases

Graph databases

Sunday, February 21, 2010

Positioning w.r.t. other NOSQL DBs

8

Size

Complexity

Key/Value stores

Bigtable clones

Document databases

Graph databases

> 90% of use cases

Billions of nodes
and relationships

Sunday, February 21, 2010

What is Neo4j?
๏Neo4j is a Graph Database

•Non-relational (“#nosql”), transactional (ACID), embedded

•Data is stored as a Graph / Network

‣Nodes and relationships with properties

‣“Property Graph” or “edge-labeled multidigraph”

๏Neo4j is Open Source / Free (as in speech) Software

•AGPLv3

•Commercial (“dual license”) license available

‣Free (as in beer) for “small” installations

‣Inexpensive (as in startup-friendly) when you grow 9

Prices are available at
http://neotechnology.com/

Contact us if you have
questions and/or special
license needs (e.g. if you
want an evaluation license)

Sunday, February 21, 2010

http://search.twitter.com/search?q=nosql
http://search.twitter.com/search?q=nosql
http://wiki.github.com/tinkerpop/gremlin/defining-a-property-graph
http://wiki.github.com/tinkerpop/gremlin/defining-a-property-graph
http://en.wikipedia.org/wiki/Multigraph
http://en.wikipedia.org/wiki/Multigraph
http://neotechnology.com
http://neotechnology.com

More about Neo4j
๏Neo4j is stable

• In 24/7 operation since 2003

๏Neo4j is in active development

•Neo Technology got VC funding October 2009

๏Neo4j delivers high performance graph operations

• traverses 1’000’000+ relationships / second
on commodity hardware

10

Sunday, February 21, 2010

The Neo4j Graph data model
๏Nodes are connected to one another through relationships

๏A Relationship is a connection between two nodes

•Relationships have types

•Relationships have a direction

•Relationships are traversed equally fast in either direction

๏Properties are mappings from a string key to a primitive value

•Both Nodes and Relationships have properties

• Primitive values are any of these (or an array of these):

‣String

‣Numbers: float, double, integers (1-8 byte) 11

Sunday, February 21, 2010

The Neo4j Graph data model

12

LIVES WITH
LOVES

OWNS
DRIVES

LOVES
name: “James”
age: 32
twitter: “@spam”

name: “Mary”
age: 35

brand: “Volvo”
model: “V70”

property type: “car”

Sunday, February 21, 2010

Graphs are all around us

A B C D ...

1

2

3

4

5

...

17 3.14 3 17.79333333333

42 10.11 14 30.33

316 6.66 1 2104.56

32 9.11 592 0.492432432432

2153.175765766

13

Even if this spread sheet looks
like it could be a fit for a RDBMS
it isn’t:
•RDBMSes have problems with
extending indefinitely on both
rows and collumns
•Formulas and data
dependencies would quickly lead
to heavy join operations

Sunday, February 21, 2010

Graphs are all around us

14

A B C D ...

1

2

3

4

5

...

17 3.14 3 = A1 * B1 / C1

42 10.11 14 = A2 * B2 / C2

316 6.66 1 = A3 * B3 / C3

32 9.11 592 = A4 * B4 / C4

 = SUM(D2:D5)

Sunday, February 21, 2010

Graphs are all around us

14

A B C D ...

1

2

3

4

5

...

17 3.14 3 = A1 * B1 / C1

42 10.11 14 = A2 * B2 / C2

316 6.66 1 = A3 * B3 / C3

32 9.11 592 = A4 * B4 / C4

 = SUM(D2:D5)

Sunday, February 21, 2010

Graphs are all around us

15

17 3.14 3 = A1 * B1 / C1

42 10.11 14 = A2 * B2 / C2

316 6.66 1 = A3 * B3 / C3

32 9.11 592 = A4 * B4 / C4

 = SUM(D2:D5)

If we add external data
sources the problem
becomes even more
interesting...

Sunday, February 21, 2010

Graphs are all around us

15

17 3.14 3 = A1 * B1 / C1

42 10.11 14 = A2 * B2 / C2

316 6.66 1 = A3 * B3 / C3

32 9.11 592 = A4 * B4 / C4

 = SUM(D2:D5)

If we add external data
sources the problem
becomes even more
interesting...

Sunday, February 21, 2010

Graphs are whiteboard friendly

16

Sunday, February 21, 2010

Graphs are whiteboard friendly

16

1

*

1

*

*

1
*

1

*

*

Sunday, February 21, 2010

Graphs are whiteboard friendly

16

thobe

Wardrobe Strength

Joe project blog

Hello Joe

Neo4j performance analysis

Modularizing Jython

Sunday, February 21, 2010

Query Languages
๏Traversal API

๏Sparql - “SQL for linked data”

SELECT ?person WHERE {
?person neo4j:KNOWS ?friend .
?friend neo4j:KNOWS ?foe .
?foe neo4j:name “Larry Ellison” .

}

๏Gremlin - “perl for graphs”

./outE[@label='KNOWS']/inV[@age > 30]/@name

17

Sunday, February 21, 2010

Python integration for Neo4j
๏Mapping of the core Neo4j API for Python

•Making it feel “Pythonic”

๏Available from the Neo4j repository (and soon from PyPI)

• http://components.neo4j.org/neo4j.py

‣svn co http://svn.neo4j.org/components/neo4j.py/trunk neo4j-python

๏Works with both Jython and CPython

•The threading of Jython is a plus with an embedded db...

๏Comes with Django empowering batteries included

•Could have support for other frameworks in the future

18

Sunday, February 21, 2010

http://components.neo4j.org/neo4j.py
http://components.neo4j.org/neo4j.py
http://svn.neo4j.org/components/neo4j.py/trunk
http://svn.neo4j.org/components/neo4j.py/trunk

Simple interaction
import neo4j
graphdb = neo4j.GraphDatabase(“var/neo”)

with graphdb.transaction:
james = graphdb.node(name=“James”, age=32, twitter=“@spam”)
mary = graphdb.node(name=“Mary”, age=35)
the_car = graphdb.node(brand=“Volvo”, model=“V70”)

james.LOVES(mary)
mary.LOVES(james)
james.LIVES_WITH(mary)
james.OWNS(the_car, property_type=“car”)
mary.DRIVES(the_car)

19

Creates the graph we saw
in the first example.

Sunday, February 21, 2010

since: “meeting the oracle” since: “a year before the movie”
cooperates on: “The Nebuchadnezzar”

Graph traversals

import neo4j
class Friends(neo4j.Traversal): # Traversals ! queries in Neo4j

types = [neo4j.Outgoing.KNOWS]
order = neo4j.BREDTH_FIRST
stop = neo4j.STOP_AT_END_OF_GRAPH
returnable = neo4j.RETURN_ALL_BUT_START_NODE

for friend_node in Friends(mr_anderson):
print “%s (@ depth=%s)” % (friend_node[“name”],

friend_node.depth) 20

name: “Thomas Anderson”
age: 29

name: “Morpheus”
rank: “Captain”
occupation: “Total badass”

name: “Trinity”

name: “Cypher”
last name: “Reagan”

name: “Agent Smith”
version: “1.0b”
language: “C++”

name: “The Architect”

KNOWS

KNOWS

KNOWS
KNOWS

KNOWS

CODED BY
LOVES

disclosure: “secret”

disclosure: “public”

Sunday, February 21, 2010

since: “meeting the oracle” since: “a year before the movie”
cooperates on: “The Nebuchadnezzar”

Graph traversals

import neo4j
class Friends(neo4j.Traversal): # Traversals ! queries in Neo4j

types = [neo4j.Outgoing.KNOWS]
order = neo4j.BREDTH_FIRST
stop = neo4j.STOP_AT_END_OF_GRAPH
returnable = neo4j.RETURN_ALL_BUT_START_NODE

for friend_node in Friends(mr_anderson):
print “%s (@ depth=%s)” % (friend_node[“name”],

friend_node.depth) 20

name: “Thomas Anderson”
age: 29

name: “Morpheus”
rank: “Captain”
occupation: “Total badass”

name: “Trinity”

name: “Cypher”
last name: “Reagan”

name: “Agent Smith”
version: “1.0b”
language: “C++”

name: “The Architect”

KNOWS

KNOWS

KNOWS
KNOWS

KNOWS

CODED BY
LOVES

disclosure: “secret”

disclosure: “public”

Sunday, February 21, 2010

since: “meeting the oracle” since: “a year before the movie”
cooperates on: “The Nebuchadnezzar”

Graph traversals

import neo4j
class Friends(neo4j.Traversal): # Traversals ! queries in Neo4j

types = [neo4j.Outgoing.KNOWS]
order = neo4j.BREDTH_FIRST
stop = neo4j.STOP_AT_END_OF_GRAPH
returnable = neo4j.RETURN_ALL_BUT_START_NODE

for friend_node in Friends(mr_anderson):
print “%s (@ depth=%s)” % (friend_node[“name”],

friend_node.depth) 20

name: “Thomas Anderson”
age: 29

name: “Morpheus”
rank: “Captain”
occupation: “Total badass”

name: “Trinity”

name: “Cypher”
last name: “Reagan”

name: “Agent Smith”
version: “1.0b”
language: “C++”

name: “The Architect”

KNOWS

KNOWS

KNOWS
KNOWS

KNOWS

CODED BY
LOVES

disclosure: “secret”

disclosure: “public”

Morpheus (@ depth=1)

Sunday, February 21, 2010

since: “meeting the oracle” since: “a year before the movie”
cooperates on: “The Nebuchadnezzar”

Graph traversals

import neo4j
class Friends(neo4j.Traversal): # Traversals ! queries in Neo4j

types = [neo4j.Outgoing.KNOWS]
order = neo4j.BREDTH_FIRST
stop = neo4j.STOP_AT_END_OF_GRAPH
returnable = neo4j.RETURN_ALL_BUT_START_NODE

for friend_node in Friends(mr_anderson):
print “%s (@ depth=%s)” % (friend_node[“name”],

friend_node.depth) 20

name: “Thomas Anderson”
age: 29

name: “Morpheus”
rank: “Captain”
occupation: “Total badass”

name: “Trinity”

name: “Cypher”
last name: “Reagan”

name: “Agent Smith”
version: “1.0b”
language: “C++”

name: “The Architect”

KNOWS

KNOWS

KNOWS
KNOWS

KNOWS

CODED BY
LOVES

disclosure: “secret”

disclosure: “public”

Morpheus (@ depth=1)

Trinity (@ depth=1)

Sunday, February 21, 2010

since: “meeting the oracle” since: “a year before the movie”
cooperates on: “The Nebuchadnezzar”

Graph traversals

import neo4j
class Friends(neo4j.Traversal): # Traversals ! queries in Neo4j

types = [neo4j.Outgoing.KNOWS]
order = neo4j.BREDTH_FIRST
stop = neo4j.STOP_AT_END_OF_GRAPH
returnable = neo4j.RETURN_ALL_BUT_START_NODE

for friend_node in Friends(mr_anderson):
print “%s (@ depth=%s)” % (friend_node[“name”],

friend_node.depth) 20

name: “Thomas Anderson”
age: 29

name: “Morpheus”
rank: “Captain”
occupation: “Total badass”

name: “Trinity”

name: “Cypher”
last name: “Reagan”

name: “Agent Smith”
version: “1.0b”
language: “C++”

name: “The Architect”

KNOWS

KNOWS

KNOWS
KNOWS

KNOWS

CODED BY
LOVES

disclosure: “secret”

disclosure: “public”

Morpheus (@ depth=1)

Trinity (@ depth=1)

Cypher (@ depth=2)

Sunday, February 21, 2010

since: “meeting the oracle” since: “a year before the movie”
cooperates on: “The Nebuchadnezzar”

Graph traversals

import neo4j
class Friends(neo4j.Traversal): # Traversals ! queries in Neo4j

types = [neo4j.Outgoing.KNOWS]
order = neo4j.BREDTH_FIRST
stop = neo4j.STOP_AT_END_OF_GRAPH
returnable = neo4j.RETURN_ALL_BUT_START_NODE

for friend_node in Friends(mr_anderson):
print “%s (@ depth=%s)” % (friend_node[“name”],

friend_node.depth) 20

name: “Thomas Anderson”
age: 29

name: “Morpheus”
rank: “Captain”
occupation: “Total badass”

name: “Trinity”

name: “Cypher”
last name: “Reagan”

name: “Agent Smith”
version: “1.0b”
language: “C++”

name: “The Architect”

KNOWS

KNOWS

KNOWS
KNOWS

KNOWS

CODED BY
LOVES

disclosure: “secret”

disclosure: “public”

Morpheus (@ depth=1)

Trinity (@ depth=1)

Cypher (@ depth=2)

Agent Smith (@ depth=3)

Sunday, February 21, 2010

since: “meeting the oracle” since: “a year before the movie”
cooperates on: “The Nebuchadnezzar”

Graph traversals

import neo4j
class Friends(neo4j.Traversal): # Traversals ! queries in Neo4j

types = [neo4j.Outgoing.KNOWS]
order = neo4j.BREDTH_FIRST
stop = neo4j.STOP_AT_END_OF_GRAPH
returnable = neo4j.RETURN_ALL_BUT_START_NODE

for friend_node in Friends(mr_anderson):
print “%s (@ depth=%s)” % (friend_node[“name”],

friend_node.depth) 20

name: “Thomas Anderson”
age: 29

name: “Morpheus”
rank: “Captain”
occupation: “Total badass”

name: “Trinity”

name: “Cypher”
last name: “Reagan”

name: “Agent Smith”
version: “1.0b”
language: “C++”

name: “The Architect”

KNOWS

KNOWS

KNOWS
KNOWS

KNOWS

CODED BY
LOVES

disclosure: “secret”

disclosure: “public”

Morpheus (@ depth=1)

Trinity (@ depth=1)

Cypher (@ depth=2)

Agent Smith (@ depth=3)

Sunday, February 21, 2010

Batteries for Django
from neo4j.model import django_model as models

class Movie(models.NodeModel):
title = models.Property(indexed=True)
year = models.Property()
href = property(lambda self: ('/movie/%s/' %

(self.node.id,)))
def __unicode__(self):

return self.title

class Actor(models.NodeModel):
name = models.Property(indexed=True)
href = property(lambda self: ('/actor/%s/' %

(self.node.id,)))
def __unicode__(self):

return self.name

etc. ...

21

Sunday, February 21, 2010

“My ORM already does this”
๏ORMs and model evolution is a hard problem

• virtually unsupported in Django

๏SQL is a “compatible” across many RDBMSs

• data is still locked in

๏Each ORM maps object models differently

•Moving to another ORM == legacy schema support

‣except your legacy schema is strange auto-generated

๏Object/Graph Mapping is always done the same

• allows you to keep your data through application changes

• or share data between multiple implementations 22

Sunday, February 21, 2010

What your ORM doesn’t do
๏Drop down to underlying graph model

•Traversals

•Graph algorithms

• Shortest path(s)

• etc.

23

Sunday, February 21, 2010

Buzzword summary

24

AGPLv3

ACID

Embedded

NOSQL

Beer

startup friendly

Open Source

Free Software

http://neo4j.org/

Software Transactional Memory

whiteboard friendly

polyglot persistence

Object mapping

Traversal
Query language

SPARQL

Scaling to complexity

Shortest path

Sunday, February 21, 2010

http://neo4j.org
http://neo4j.org

http://neotechnology.com

Sunday, February 21, 2010

