
1 My name is Eric Silverman, and I am a Defense
Contractor working on a project for the US Army.
What I am going to discuss is the Military’s use of
Python for modeling battlefield scenarios.

I work out in the New Mexico desert at a secure
military installation on classified projects. I
mention that, so that you understand that what
I’m going to be showing is generalized and very
watered down.

I apologize ahead of time if you’re underwhelmed
by the examples your about to see.

2 I am one of many people who support the Army’s
Training and Doctrine Command, which is known
as TRADOC. More specifically, we work for
TRADOC’s Analysis Center, or TRAC; which is the
Army’s research and analysis arm.

Contrary to popular belief, the Army puts a lot of
effort into research and analysis before spending
millions, if not billions, of tax payers’ dollars on
new weapons, vehicles, and equipment.

The work that is concerned with the analysis of
Advanced Concepts and Requirements is done by
the analyst at TRAC.

3 One of the ways that the Army conducts their
analysis is with computer models.

Modeling a combat scenario always starts with
what we know. The nature of this data is based
in physics or validated quantifiable data. For
example, we know that based on the size,
weight, and velocity of a projectile how far it will
fly within specific gravitational, atmospheric, and
environmental conditions.

The analysts build a scenario based on a specific
battle situation, and feed in the known data.
And, runs it through the model.

COMBATXX is the wargaming model that we
support. It uses a sophisticated stochastic system

to analyze the interactions between agents on the play board. COMBATXXI is what’s known as a Closed Form
model. That means that all the parameters and scripts need to be developed before the scenario starts. This is
where Python comes in, but we’ll talk about that in a few minutes.

After the model completes its run through the scenario, it outputs raw data. Military Operations Analysts (our end-
users) study, evaluate, and scrutinize the gigabytes of data. From which, they create reports and briefing material
that are presented to decision makers.

4 I’m going to show you an example of a very simple battle
scenario. It’s very simple because of the time limitation. A
complex battle scenario can’t be easily explained in 30
minutes. Also, I want to warn you ahead of time: THIS IS
NOT HALO!!! No cool 3-D graphics here. The power behind
COMBATXXI is the stochastic analysis engine. It definitely is
not graphical output.

Our scenarios, without Python, use scripted – or static –
behaviors. Every aspect of the scenario had to be known,
planned out, and meticulously scripted.

The first element in a scenario is the terrain. This is a

representation of an urban terrain. There are roadways, buildings – the black blocks, and a city grid. While this is a
2-dimensional, top-down view, we do play height but do not represent it visual.

In this scenario, we have placed 7 entities – or, agents. Six total good guys in 2 units, blue represents friendly
forces; and 1 bad guy, red represents hostile forces.

For scripted behaviors to work we need to:
First, script an engagement behavior with specified weapons and targets.
Second, lay down routes for all the movements, and script all the movement.
And finally, test the scenario to make sure that everything is timed just right.
What’s going to happen is, you’ll see, the red guy fire a mortar at the southern unit.
Then, the good guys to the west are going to move towards the hostile position.
You’ll notice that there are 2 blue routes, because in the Army we always outflank the enemy.
However, the bad guy is going to flee the scene, and gets away.

5 (Watch scenario play out)

At this point the good guys stop because there are
no scripted behavior to tell them exactly what to
do and when to do it.

Obviously, there are some serious shortcomings to
this approach. But, rather than talking about what
scripted behaviors cannot do, I’ll show you an
example of how we can do a lot more with the
same scenario and dynamic behaviors.

6 Setting up a scenario for dynamic behaviors
requires us to add some objects, and remove
others.

We start out with the same number of good guys.

However, we’ve added a new bad guy to the
south.
The new bad guy is a spotter; his job is to look for
his enemy the good guys, and then relay their
position to the shooter.

We have no preplanned routes now. However, we
can designate high risk areas; such as a main
thoroughfare. Generally speaking, soldiers don’t
like to be out in the open when in hostile territory.
So, in our scenarios we designate an area that we
know the blue force will avoid, and let the entities
create their own path to the objective area.

7 The patrol unit will be moving northbound on the
MSR (or Main Supply Route… what we civilians like
to call a highway).
The spotter will watch for enemy forces, and
report their position, and direction of movement.
When the shooter receives the location to fire on,
an engagement behavior will be triggered. The
shooter uses the target’s location, heading, and
rate of movement as parameters. Because in the
real world people that are getting shot at generally
like to move, we need a formula to calculate the
location of the target based on its movement, and
to aim at that location. This is what’s known as
“leading” the target.

Using a device that’s available to our troops, the
source location of an indirect fire can be accurately
determined.

Indirect fire, by the way, is when the shooter and the target cannot see each other; so the shooter is firing at a
location, rather than a specific target.

– Notice the waypoint marker.
With the location known, the support unit will create their own route to the objective area; still using a flanking
maneuver.

8 …And, they will start moving out.

Because we have intelligent agents on the play
board, they can stop moving. If, say for example,
“intel” is received about a source of information
that can be interrogated while in route.

This is a simple example of why Python is such a
valuable tool for us. Unlike with scripted
behaviors, with Python and dynamic behaviors, we
have to ability break a maneuver while an agent is
in route to the objective.

9 The agents, with situational awareness, can stop
and create a new dynamic route to the new
objective.

After the interrogation is complete, they will move
onto their original objective location.

10 We also apply reactive behaviors with Python to
the bad guys. So, Instead of just fleeing a tactical
site, our hostile entity can maintain its position
until it feels threatened. The hostile entity
escapes the area only after seeing that it is
outnumbered by the approaching blue forces.

Of course, we can continue this scenario with
how the blue force might pursue an escaping
enemy. But, I think you get the idea.

11 Why is this relevant?
I believe President Obama said it best last August,
when he stated that much of our defense
establishment is still focused on Cold War
doctrine and weapons. The President went on to
say: "Twenty years after the Cold War ended, this
is simply irresponsible. “

Now, scripted behaviors are great if we are
fighting in trench-warfare circa World War I, or
even for armored battalions that are executing a
Pincer maneuver in the oil fields of Kuwait.
But, Irregular Warfare against enemies with IEDs
that adhere to no rules of engagement; that
requires a computer model that is much more
flexible, much more agile, and much more
adaptive. What was needed was a model with a
Jython API implementation.

12 COMBATXXI has that embedded Jython API that
allows users to control movements and actions
of "entities". Entities can be almost anything - a
tank, truck, soldier, or civilian.
Jython's features allow for quick creation and
implementation of dynamic behaviors.
Each entity carries its own global Jython
namespace throughout the simulation - roughly
equivalent to memory and situational awareness
of a real life person.

COMBATXXI has events that trigger, which start
the entities' Jython scripts, and causes the entity
to react, or behave, in a more realistic and
dynamic manner. When one entity reacts to a
trigger, that entity's reaction may trigger another
entity's behavior, resulting in a cascading effect
across the entire scenario.

13 Because Jython provides un-tethered access to all
of the Python, Java, and COMBATXXI source code
it is very powerful - and very dangerous.
Essentially, the Jython API gives the users full
access to all of the Getters and Setters for all the
objects in the source code.

To protect the source code objects, we have
created wrapper classes that provide access to
the Getters, and only a select few Setters.
There is also a Functions Library .py file to provide
the users with useful and time saving callable
method.

Using the encapsulated methods, users develop
the dynamic behaviors by importing the .py files
with the methods that have been developed for
their use.

14 Here is a simple example of how dynamic
movement might be scripted with Python code.

We import the Functions library on line 3.
Our users are non-programmers, so simple to
understand and callable methods are the way to
go. Admittedly, this is not the most Pythonic
way to get the job done. But, in the end we
would rather have something our users can
understand – and with any luck, we won’t
offend the OOP Gods… too much.

On line 5, using the “location” wrapper class, we
call the getter to return the entity’s current
location. In doing so, we’ll instantiate an object
from the application’s source code in the Python
behavior script.

Using a few local variables, we loop and check for line of sight in 5 meter increments. By calling the
is_line_of_sight_between_locations method in line 13, we test two points. When there is no line of sight, the code
breaks out of the loop.

With the locOfMe object, that was istantiated in line 5, we have access to all of the object’s properties and
methods. One of those methods might be new_Offset_Location. By calling it, we can istantiate a new object by
passing in two parameters; the direction and distance to be offsetted towards the new location.

15
With a different wrapper class called “command”
we create a new object called moveOrder on line
18.

This object has its own properties and methods. In
line 20, we add a location to move to, which is the
object from line 16; and the speed that which the
entity will move.

On line 24, we call the command wrapper class
again, this time to execute the behavior.

With just 13 lines of Python (not including the
inline comments), we essentially created a
framework for coding dynamic movement with no

preplanned route. Here is an example of how this behavior would play out in a scenario with an entity that moves
eastward till there is an obstacle.

We test for line of sight from the entity’s current location westward in 5 meter increments.

When the line of sight test returns false, the looping checks stop.

The entity uses the distance of the last successful line of sight test as the point to move to.
An order is created and executed, then the entity moves to the new location.

16 Something that has not been talked about yet is
who is creating the dynamic behaviors with Python.

For the most part, they are research analysts with
very little programming experience. That being the
case, a lot of support needs to be provided.

To start with, a very detailed user document was
authored and is maintained on an internal wiki.
Because the users are not experienced
programmers javadoc style documentation won’t
do. Instead, the user docs include full descriptions,
examples on how to use the code, and even
screenshots.

The development group created a training program that was about 3-workdays worth of hands-on training. It
started out with very simple topics that covered basic Python syntax, and then moved on to more advanced topics
like using databases and class files.

This training had full support from management, which allowed the developers ample time and resources to create
the training program. It also allowed the end-users time away from their daily duties in order to attend the training.
This point cannot be undervalued. The actual implantation of the Jython API and creating proof-of-concept
dynamic behaviors was a grass-roots effort that a couple of developers took upon themselves. However, the actual
implementation into the workforce could not have happened if not for management support.

And, equally important is continual support for the users. Even if we created the most comprehensive user-docs
and provided the best training possible, this effort would die in weeks if the developers did not continue to provide
support. Because our user base is not made up of seasoned programmers, a lot of hand-holding is required.
Sometimes that support comes as basic as how to compare a returned object to a string value and other efforts
required weeks of work to help develop complex behaviors for the analyst. In these cases the goal is turn-key code
that we create, but the users maintain.

The point is: a successful implementation of an open source solution at the user base level requires that we - the
developers - respect the users for what their strengths are and compensate them for where their strengths are not.

17 In summary: weapons, vehicles, equipment, and
tactics being used by our Military are being tested
with an Agent Based Model.

This Model leverages the open source and object
oriented power of Python to develop Dynamic and
Reactive Behaviors; which are being developed by
Non-Programmers.

This organization successfully implemented a
Python solution because:

 Control Access is provided to Java-based Source
Code with Python Wrapper Classes,

 Programmers Assist the Empowered Users with:
Documentation, Training, and User Support,

 There was upper management support.

18 Thank you for your time.

If you have any questions, or would like so more
information, please take down my contact
information. I’d be happy to speak with any of you.

