
Turtles
All The Way Down

Demystifying Deferreds, Decorators, and Declarations

Saturday, February 20, 2010

Hello!

Saturday, February 20, 2010

glyph@twistedmatrix.com

Saturday, February 20, 2010

mailto:glyph@twistedmatrix.com
mailto:glyph@twistedmatrix.com

(glyph)

Saturday, February 20, 2010

(twisted)

Saturday, February 20, 2010

(twisted)

Saturday, February 20, 2010

Saturday, February 20, 2010

Saturday, February 20, 2010

Saturday, February 20, 2010

Saturday, February 20, 2010

EXPECTATIONS

Saturday, February 20, 2010

MANAGEMENT

Saturday, February 20, 2010

!
Saturday, February 20, 2010

What you won’t learn:

Saturday, February 20, 2010

What you won’t learn:
• In-Depth Usage of:

• Twisted

• Interfaces

• Deferreds

• Decorators

• Metaclasses

• …

Saturday, February 20, 2010

What you will learn:

Saturday, February 20, 2010

What you will learn:

• How to think about:

• what an “object” is,

• what “def” and “class” really mean,

• and most of all:

Saturday, February 20, 2010

How to conquer your
fear of “weird” Python.

Saturday, February 20, 2010

How to conquer your
fear of “weird” Python.*

Saturday, February 20, 2010

*
Saturday, February 20, 2010

Easy
Consistent

Simple
(as long as you think of it the right way)

Saturday, February 20, 2010

x

Saturday, February 20, 2010

x =

Saturday, February 20, 2010

x = 1

Saturday, February 20, 2010

import os

class z:
 def y(self):
 x = 1

Saturday, February 20, 2010

import os

class z:
 def y(self):
 x = 1

Saturday, February 20, 2010

import os

class z:
 def y(self):
 x = 1

Saturday, February 20, 2010

import os

class z:
 def y(self):
 x = 1

Saturday, February 20, 2010

import os

class z:
 def y(self):
 x = 1

Saturday, February 20, 2010

Saturday, February 20, 2010

x = 1

Saturday, February 20, 2010

globals()['x'] = 1

Saturday, February 20, 2010

Or,

Saturday, February 20, 2010

def value(f):
 return f()
@value
def x():
 return 1

Saturday, February 20, 2010

Or,

Saturday, February 20, 2010

def one(name, bases, attrs):
 return 1

class x:
 __metaclass__ = one

Saturday, February 20, 2010

def one(name, bases, attrs):
 return 1

class x(metaclass=one):
 pass

Saturday, February 20, 2010

def one(name, bases, attrs):
 return 1

class x(metaclass=one):
 pass

W
oo, p

yth
on 3

!

Saturday, February 20, 2010

Free your mind!

Saturday, February 20, 2010

Python is special!

Saturday, February 20, 2010

Java:

Saturday, February 20, 2010

class Foo {
 @Annotation
 public static final int bar (String [])
 {
 ...
 }
}

Saturday, February 20, 2010

?

Saturday, February 20, 2010

class Foo {
 @Annotation
 public static final int bar (String [])
 {
 ...
 }
}

Saturday, February 20, 2010

Saturday, February 20, 2010

Saturday, February 20, 2010

Classloaders

Saturday, February 20, 2010

Classloaders

Saturday, February 20, 2010

Classloaders

Retention
Policies

Saturday, February 20, 2010

Classloaders

Retention
Policies

Saturday, February 20, 2010

Classloaders

Retention
Policies

Protection
Domains

Saturday, February 20, 2010

Classloaders

Retention
Policies

Protection
Domains

Saturday, February 20, 2010

Classloaders

Retention
Policies

Protection
Domains

Saturday, February 20, 2010

Classloaders

Retention
Policies

Protection
Domains

Class
Objects

Saturday, February 20, 2010

Classloaders

Retention
Policies

Protection
Domains

Class
Objects

Saturday, February 20, 2010

Classloaders

Retention
Policies

Protection
Domains

Class
Objects

Method
Objects

Saturday, February 20, 2010

Classloaders

Retention
Policies

Protection
Domains

Class
Objects

Method
Objects

Saturday, February 20, 2010

Classloaders

Retention
Policies

Protection
Domains

Class
Objects

Method
Objects

Saturday, February 20, 2010

Classloaders

Retention
Policies

Protection
Domains

Class
Objects

Method
Objects

Constructor
Objects

Saturday, February 20, 2010

Classloaders

Retention
Policies

Protection
Domains

Class
Objects

Method
Objects

Constructor
Objects

Saturday, February 20, 2010

Classloaders

Retention
Policies

Protection
Domains

Class
Objects

Method
Objects

Constructor
Objects

Field
Objects

Saturday, February 20, 2010

Classloaders

Retention
Policies

Protection
Domains

Class
Objects

Method
Objects

Constructor
Objects

Field
Objects

@

Saturday, February 20, 2010

Classloaders

Retention
Policies

Protection
Domains

Class
Objects

Method
Objects

Constructor
Objects

Field
Objects

@

Annotations

Saturday, February 20, 2010

? ? ?

Saturday, February 20, 2010

Why so many ways?

Saturday, February 20, 2010

Syntactic sugar makes
the medicine go down.

Saturday, February 20, 2010

3 + 4

Saturday, February 20, 2010

(3).__add__(4)

Saturday, February 20, 2010

(or, actually…)

Saturday, February 20, 2010

m = getattr(type(3), '__add__', None)
if m is not None:
 return m(3, 4)
else:
 m = getattr(type(4), '__radd__', None)
 return m(4, 3)

Saturday, February 20, 2010

Why so much
flexibility?

Saturday, February 20, 2010

Anything Python does,
you can do too.

Saturday, February 20, 2010

Decimal

Saturday, February 20, 2010

>>> from decimal import Decimal
>>> a = Decimal("3")
>>> b = Decimal("4")
>>> a + b
Decimal('7')

Saturday, February 20, 2010

Fraction

Saturday, February 20, 2010

>>> from fractions import Fraction
>>> a = Fraction(3, 1)
>>> b = Fraction(4, 1)
>>> a / b
Fraction(3, 4)

Saturday, February 20, 2010

3 basic types
of “thing”

Saturday, February 20, 2010

Noun
Being Verb
Action Verb

Saturday, February 20, 2010

Noun:
object

Saturday, February 20, 2010

Nouns:

x

Saturday, February 20, 2010

Nouns:

Instance

Saturday, February 20, 2010

Nouns:

Class

Saturday, February 20, 2010

Nouns:

Function

Saturday, February 20, 2010

Nouns:

Method

Saturday, February 20, 2010

Nouns:

Module

Saturday, February 20, 2010

Nouns:

Built-In Types

Saturday, February 20, 2010

Action verb:
method call

Saturday, February 20, 2010

Action Verb:

...(): __call__

Saturday, February 20, 2010

Action Verb:

+: .__add__()
-: .__sub__()
*: .__mul__()
/: .__div__()

[]: .__getitem__()

Saturday, February 20, 2010

Being Verb:
Assignment

Saturday, February 20, 2010

Saturday, February 20, 2010

IT’S
Saturday, February 20, 2010

Being Verb:

x = 1

x = 1

↓

Saturday, February 20, 2010

Being Verb:

def b():
 return 1

b = types.FunctionType(
 types.CodeType(...),
 globals(),
 “b”)

↓

Saturday, February 20, 2010

Being Verb:

class X(A, B):
 y = 1

d = {“y”: 1}
metaclass = ...
X = metaclass(“X”, (A, B), d)

↓

Saturday, February 20, 2010

Being Verb:

class X(A, B):
 y = 1

d = {“y”: 1}
metaclass = ...
X = metaclass(“X”, (A, B), d)

↓

W
oo, p

yth
on 3

!

Saturday, February 20, 2010

Being Verb:

class X(A, B):
 y = 1

d = {“y”: 1}
metaclass = ...
X = metaclass(“X”, (A, B), d)

↓

Saturday, February 20, 2010

Being Verb:

import x

x = __import__(“x”, ...)

↓

Saturday, February 20, 2010

Being Verb:
@a
def b():
 pass

def b():
 pass
b = a(b)

↓

Saturday, February 20, 2010

What happens when
you ferment syntactic

sugar?

Saturday, February 20, 2010

Syntactic Alcohol!

Saturday, February 20, 2010

(drink responsibly)

Saturday, February 20, 2010

Decimal & Fraction
(Numbers Flambé)

Saturday, February 20, 2010

(this slide intentionally le blank)

Saturday, February 20, 2010

How does it work?

Saturday, February 20, 2010

class Number(object):
 def __init__(self, value):
 self.value = value

 def __add__(self, other):
 return Number(str(int(self.value) +
 int(other.value)))

 def __repr__(self):
 return "Number({value})".format(
 value=repr(self.value))

print Number("3") + Number("4")

Saturday, February 20, 2010

class Number(object):
 def __init__(self, value):
 self.value = value

 def __add__(self, other):
 return Number(str(int(self.value) +
 int(other.value)))

 def __repr__(self):
 return "Number({value})".format(
 value=repr(self.value))

print(Number("3") + Number("4")

Saturday, February 20, 2010

Higher-Order Functions
(functions that call functions)

Saturday, February 20, 2010

Deferred
(Events on the Rocks)

Saturday, February 20, 2010

Deferred
(Events on the Rocks)

Saturday, February 20, 2010

Deferred
(Events on the Rocks)

Hi!

Saturday, February 20, 2010

Deferred
(Events on the Rocks)

(I lied.)

Saturday, February 20, 2010

>>> from twisted.internet.defer import Deferred
>>> d = Deferred()
>>> def a(result):
... print 'OK!', result
... return result + 1
...
>>> d.addCallback(a)
<Deferred at 0x100509bd8>
>>> d.callback(3)
OK! 3
>>> d.addCallback(a)
OK! 4
<Deferred at 0x100509bd8 current result: 5>

Saturday, February 20, 2010

How does it work?

Saturday, February 20, 2010

-*- test-case-name:
twisted.test.test_defer,twisted.test.test_de
fgen,twisted.internet.test.test_inlinecb -*-
Copyright (c) 2001-2010 Twisted Matrix
Laboratories.
See LICENSE for details.

"""
Support for results that aren't immediately
available.

Maintainer: Glyph Lefkowitz
"""

import traceback
import warnings
from sys import exc_info

Twisted imports
from twisted.python import log, failure,
lockfile
from twisted.python.util import unsignedID,
mergeFunctionMetadata

class AlreadyCalledError(Exception):
 pass

class TimeoutError(Exception):
 pass

def logError(err):
 log.err(err)
 return err

def succeed(result):
 """
 Return a Deferred that has already had
'.callback(result)' called.

 This is useful when you're writing
synchronous code to an
 asynchronous interface: i.e., some code
is calling you expecting a
 Deferred result, but you don't actually
need to do anything
 asynchronous. Just return defer.succeed
(theResult).

 See L{fail} for a version of this
function that uses a failing
 Deferred rather than a successful one.

 @param result: The result to give to the
Deferred's 'callback'
 method.

 @rtype: L{Deferred}
 """
 d = Deferred()
 d.callback(result)
 return d

def fail(result=None):
 """
 Return a Deferred that has already had
'.errback(result)' called.

 See L{succeed}'s docstring for
rationale.

 @param result: The same argument that L
{Deferred.errback} takes.

 @raise NoCurrentExceptionError: If C
{result} is C{None} but there is no
 current exception state.

 @rtype: L{Deferred}
 """
 d = Deferred()
 d.errback(result)
 return d

def execute(callable, *args, **kw):
 """Create a deferred from a callable and
arguments.

 Call the given function with the given
arguments. Return a deferred which
 has been fired with its callback as the
result of that invocation or its
 errback with a Failure for the exception
thrown.
 """
 try:
 result = callable(*args, **kw)
 except:
 return fail()
 else:
 return succeed(result)

def maybeDeferred(f, *args, **kw):
 """Invoke a function that may or may not
return a deferred.

 Call the given function with the given
arguments. If the returned
 object is a C{Deferred}, return it. If
the returned object is a C{Failure},
 wrap it with C{fail} and return it.
Otherwise, wrap it in C{succeed} and
 return it. If an exception is raised,
convert it to a C{Failure}, wrap it
 in C{fail}, and then return it.

 @type f: Any callable
 @param f: The callable to invoke

 @param args: The arguments to pass to C
{f}
 @param kw: The keyword arguments to pass
to C{f}

 @rtype: C{Deferred}
 @return: The result of the function
call, wrapped in a C{Deferred} if
 necessary.
 """
 try:
 result = f(*args, **kw)
 except:
 return fail(failure.Failure())

 if isinstance(result, Deferred):
 return result
 elif isinstance(result,
failure.Failure):
 return fail(result)
 else:
 return succeed(result)

def timeout(deferred):
 deferred.errback(failure.Failure
(TimeoutError("Callback timed out")))

def passthru(arg):
 return arg

def setDebugging(on):
 """Enable or disable Deferred debugging.

 When debugging is on, the call stacks
from creation and invocation are
 recorded, and added to any
AlreadyCalledErrors we raise.
 """
 Deferred.debug=bool(on)

def getDebugging():
 """Determine whether Deferred debugging
is enabled.
 """
 return Deferred.debug

class Deferred:
 """This is a callback which will be put
off until later.

 Why do we want this? Well, in cases
where a function in a threaded
 program would block until it gets a
result, for Twisted it should
 not block. Instead, it should return a
Deferred.

 This can be implemented for protocols
that run over the network by
 writing an asynchronous protocol for
twisted.internet. For methods
 that come from outside packages that are
not under our control, we use
 threads (see for example L
{twisted.enterprise.adbapi}).

 For more information about Deferreds,
see doc/howto/defer.html or
 U{http://twistedmatrix.com/projects/
core/documentation/howto/defer.html}
 """
 called = 0
 paused = 0
 timeoutCall = None
 _debugInfo = None

 # Are we currently running a user-
installed callback? Meant to prevent
 # recursive running of callbacks when a
reentrant call to add a callback is
 # used.
 _runningCallbacks = False

 # Keep this class attribute for now, for
compatibility with code that
 # sets it directly.
 debug = False

 def __init__(self):
 self.callbacks = []
 if self.debug:
 self._debugInfo = DebugInfo()
 self._debugInfo.creator =
traceback.format_stack()[:-1]

 def addCallbacks(self, callback,
errback=None,
 callbackArgs=None,
callbackKeywords=None,
 errbackArgs=None,
errbackKeywords=None):
 """Add a pair of callbacks (success
and error) to this Deferred.

 These will be executed when the
'master' callback is run.
 """
 assert callable(callback)
 assert errback == None or callable
(errback)
 cbs = ((callback, callbackArgs,
callbackKeywords),
 (errback or (passthru),
errbackArgs, errbackKeywords))
 self.callbacks.append(cbs)

 if self.called:
 self._runCallbacks()
 return self

 def addCallback(self, callback, *args,
**kw):
 """Convenience method for adding
just a callback.

 See L{addCallbacks}.
 """
 return self.addCallbacks(callback,
callbackArgs=args,

callbackKeywords=kw)

 def addErrback(self, errback, *args,
**kw):
 """Convenience method for adding
just an errback.

 See L{addCallbacks}.
 """
 return self.addCallbacks(passthru,
errback,

errbackArgs=args,

errbackKeywords=kw)

 def addBoth(self, callback, *args,
**kw):
 """Convenience method for adding a
single callable as both a callback
 and an errback.

 See L{addCallbacks}.
 """
 return self.addCallbacks(callback,
callback,

callbackArgs=args, errbackArgs=args,

callbackKeywords=kw, errbackKeywords=kw)

 def chainDeferred(self, d):
 """Chain another Deferred to this
Deferred.

 This method adds callbacks to this
Deferred to call d's callback or
 errback, as appropriate. It is
merely a shorthand way of performing
 the following::

 self.addCallbacks(d.callback,
d.errback)

 When you chain a deferred d2 to
another deferred d1 with
 d1.chainDeferred(d2), you are making
d2 participate in the callback
 chain of d1. Thus any event that
fires d1 will also fire d2.
 However, the converse is B{not}
true; if d2 is fired d1 will not be
 affected.
 """
 return self.addCallbacks(d.callback,
d.errback)

 def callback(self, result):
 """Run all success callbacks that
have been added to this Deferred.

 Each callback will have its result
passed as the first
 argument to the next; this way, the
callbacks act as a
 'processing chain'. Also, if the
success-callback returns a Failure
 or raises an Exception, processing
will continue on the *error*-
 callback chain.
 """
 assert not isinstance(result,
Deferred)
 self._startRunCallbacks(result)

 def errback(self, fail=None):
 """
 Run all error callbacks that have
been added to this Deferred.

 Each callback will have its result

Saturday, February 20, 2010

http://twistedmatrix.com/projects/core/documentation/howto/defer.html%7D
http://twistedmatrix.com/projects/core/documentation/howto/defer.html%7D
http://twistedmatrix.com/projects/core/documentation/howto/defer.html%7D
http://twistedmatrix.com/projects/core/documentation/howto/defer.html%7D

Oops! I mean…

Saturday, February 20, 2010

class Event(object):
 def __init__(self):
 self.functions = []

 def whenDone(self, somethingToDo):
 self.functions.append(somethingToDo)

 def done(self, result):
 for function in self.functions:
 result = function(result)

Saturday, February 20, 2010

class Event(object):
 def __init__(self):
 self.functions = []

 def whenDone(self, somethingToDo):
 self.functions.append(somethingToDo)

 def done(self, result):
 for function in self.functions:
 result = function(result)

Saturday, February 20, 2010

e = Event()
def a(result):
 print 'OK!', result
 return result + 1
e.whenDone(a)
e.whenDone(a)
e.done(3)

prints...
OK! 3
OK! 4

Saturday, February 20, 2010

Zope Interface:
(Class Daquiri)

Saturday, February 20, 2010

>>> from zope.interface import Interface
>>> class ISomething(Interface):
... def something():
... "Something."
...
>>> ISomething
<InterfaceClass __main__.ISomething>

Saturday, February 20, 2010

>>> list(ISomething)
['something']
>>> hasattr(ISomething, 'something')
False
>>> ISomething['something']
<zope.interface.interface.Method object at 0x100597390>

Saturday, February 20, 2010

How does it work?

Saturday, February 20, 2010

…

Saturday, February 20, 2010

import types

class DescriptionType(object):
 def __init__(self, names):
 self.names = names
 def __repr__(self):
 return 'DescriptionType({names})'.format(
 names=repr(self.names))

class MetaDescription(type):
 def __new__(cls, name, bases, namespace):
 if name == 'Description':
 return super(MetaDescription, cls).__new__(
 cls, name, bases, namespace)
 names = []
 for name in namespace:
 if isinstance(namespace[name],
 types.FunctionType):
 names.append(name)
 return DescriptionType(names)

class Description(object):
 __metaclass__ = MetaDescription

Saturday, February 20, 2010

import types

class DescriptionType(object):
 def __init__(self, names):
 self.names = names
 def __repr__(self):
 return 'DescriptionType({names})'.format(
 names=repr(self.names))

class MetaDescription(type):
 def __new__(cls, name, bases, namespace):
 if name == 'Description':
 return super(MetaDescription, cls).__new__(
 cls, name, bases, namespace)
 names = []
 for name in namespace:
 if isinstance(namespace[name],
 types.FunctionType):
 names.append(name)
 return DescriptionType(names)

class Description(object):
 __metaclass__ = MetaDescription

Saturday, February 20, 2010

import types

class DescriptionType(object):
 def __init__(self, names):
 self.names = names
 def __repr__(self):
 return 'DescriptionType({names})'.format(
 names=repr(self.names))

class MetaDescription(type):
 def __new__(cls, name, bases, namespace):
 if name == 'Description':
 return super(MetaDescription, cls).__new__(
 cls, name, bases, namespace)
 names = []
 for name in namespace:
 if isinstance(namespace[name],
 types.FunctionType):
 names.append(name)
 return DescriptionType(names)

class Description(metaclass=MetaDescription):
 pass

Saturday, February 20, 2010

import types

class DescriptionType(object):
 def __init__(self, names):
 self.names = names
 def __repr__(self):
 return 'DescriptionType({names})'.format(
 names=repr(self.names))

class MetaDescription(type):
 def __new__(cls, name, bases, namespace):
 if name == 'Description':
 return super(MetaDescription, cls).__new__(
 cls, name, bases, namespace)
 names = []
 for name in namespace:
 if isinstance(namespace[name],
 types.FunctionType):
 names.append(name)
 return DescriptionType(names)

class Description(metaclass=MetaDescription):
 pass

W
oo, p

yth
on 3

!

Saturday, February 20, 2010

class DescribeSomething(Description):
 def something(self):
 pass
 def somethingElse(self):
 pass
 notSomething = 4321

print DescribeSomething

...

DescriptionType(['somethingElse', 'something'])

Saturday, February 20, 2010

Nevow’s “Stan”
(HTML, Served neat)

Saturday, February 20, 2010

>>> from nevow.flat import flatten
>>> from nevow.tags import p, b, i
>>> p[b["hello"], ", ", i["world!"]]
>>> flatten(p(id="paragraph")[b(id="bold")
 ["hello"], ", ", i["world!"]])
'<p id="paragraph"><b id="bold">hello,
<i>world!</i></p>'

Saturday, February 20, 2010

How does it work?

Saturday, February 20, 2010

class Outline(object):
 def __init__(self, name):
 self.name = name
 self.nodes = []

 def __getitem__(self, files):
 self.nodes.extend(files)
 return self

 def show(self, indent=0):
 print((" " * indent * 4) +
 "* " + self.name)
 for node in self.nodes:
 node.show(indent+1)

Saturday, February 20, 2010

class Outline(object):
 def __init__(self, name):
 self.name = name
 self.nodes = []

 def __getitem__(self, files):
 self.nodes.extend(files)
 return self

 def show(self, indent=0):
 print((" " * indent * 4) +
 "* " + self.name)
 for node in self.nodes:
 node.show(indent+1)

Saturday, February 20, 2010

Outline("Top")[
 Outline("1"),
 Outline("2")[
 Outline("a"),
 Outline("b"),
 Outline("c"),
],
 Outline("3")
].show()

Saturday, February 20, 2010

* Top
 * 1
 * 2
 * a
 * b
 * c
 * 3

Saturday, February 20, 2010

Saturday, February 20, 2010

[twisted matrix]

Saturday, February 20, 2010

