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Give people electricity access

Bank recruits consultants, who talk to 
ministers, utility owners, local leaders

Consultants draft plan

Bank sends plan to financiers

Financiers fund construction

People get electricity

Country goes to bank



A credit-worthy infrastructure plan

IS GROUNDED IN
geospatial and economic analysis

IS THE RESULT OF
negotiation between stakeholders



By making expert technical analysis
accessible, we enable policymakers

to focus on negotiation

Operations Research
Remote Sensing

GIS
Econometrics

Electrical Engineering

Local
Leaders

State
Officials

Utility
Owners



A decision support tool
for planning infrastructure

Where do people live?
What is the expected demand at a node?

How much will it cost to connect a node?
Using which technology?

In what order?
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Computational core

Command-line utilities
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web

service
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Success story #1: Remote sensing

Question Where do people live?

Manual Send people with GPS devices
Click on houses in satellite images

Method Machine learning Image recognition

Command
line subprocess | Lush osgeo | GDAL      Generators

Scalable web Pylons | SQLAlchemy ampqlib |RabbitMQ



Computational core:
Remote sensing
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How do we mark houses automatically?

1. Train local classifier to recognize houses
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1. Train local classifier to recognize houses

House? Yes
Confidence 88%

House? No
Confidence 95%



How do we mark houses automatically?

1. Train local classifier to recognize houses

Convolutional Neural Networks (LeNet5)
Yann LeCun, Courant Institute, NYU
• Recognizes houses correctly at least 98% of the 

time when trained with grayscale images



How to scan an image with a classifier

Increasing scanRatio results in more overlapping windows. �e scanGeoInterval
is the number of meters the scanning window moves horizontally and vertically
and is a fraction of windowGeoLength. �us if windowGeoLength=20m and 
scanRatio=2 then scanGeoInterval=10m.
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How to scan an image with a classifier

Increasing scanRatio results in more overlapping windows. �e scanGeoInterval
is the number of meters the scanning window moves horizontally and vertically
and is a fraction of windowGeoLength. �us if windowGeoLength=20m and 
scanRatio=2 then scanGeoInterval=10m.



How do we mark houses automatically?

2. Scan local classifier over image to generate a 
matrix of probabilities



How do we mark houses automatically?

3. Cluster in three dimensions to turn local 
probabilities into points



How do we mark houses automatically?

3. Cluster in three dimensions to turn local 
probabilities into points

Use K-means

Pop large clusters
Remove small clusters



Computational core:
Remote sensing

Load raster data from images
Save vector data to shapefiles

import osgeo.gdal
import osgeo.ogr

Run Lisp machine learning code import subprocess

Cluster points
Save matrices

import scipy.cluster.vq
import scipy.io

Scan image with little memory yield

Render 16-bit satellite image import matplotlib



Computational core:
Remote sensing

Run Lisp machine learning code import subprocess

p = subprocess.Popen(programArguments,
stdin=subprocess.PIPE,
stdout=subprocess.PIPE)

for imageData in imageDataGenerator:
# Send imageData to Lisp program
p.stdin.write(imageData + '\n')
# Receive result from Lisp program
result = p.stdout.readline().rstrip()



Where is Uganda?



Where is Uganda?Where is Ruhiira?



Results from Ruhiira in Uganda

Farm 2 - Multispectral
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Results from Ruhiira in Uganda

Farm 2 - MultispectralFarm 2 - PanchromaticFarm 2 - Computer probabilitiesFarm 2 - ComputerFarm 2 - Computer & HumanFarm 2 - Human



Where is Ethiopia?



Where is Ethiopia?Where is Koraro?



Results from Koraro in Ethiopia

Farm 1 - Multispectral
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Results from Koraro in Ethiopia

Farm 1 - Computer & Human



Results from Koraro in Ethiopia

Farm 1 - Human



Success Story #2: Network Modeling

Question Where should we build infrastructure?

Manual Spreadsheets Java Desktop GIS

Method Mathematical 
modeling

Geospatial 
optimization Visualization

Command
line

numpy
scipy shapely | geos geojson | openlayers

osgeo | proj4

Scalable 
web Pylons | SQLAlchemy ampqlib |RabbitMQ



Computational core:
Network modeling



a b c

d e f

g h i j

a) Bonsaaso, GHANA
b) Tiby, MALI
c) Pampaida, NIGERIA
d) Potou, SENEGAL
e) Koraro, ETHIOPIA
f ) Mwandama, MALAWI
g) Mbola, TANZANIA
h) Mayange, RWANDA
i) Ruhiira, UGANDA
j) Sauri, KENYA

Zvoleff, Kocaman, 
Huh, Modi (2009)

MID:99.7

MID:32.7

MID:54.3

MID:56.9



Computational core:
Network modeling

For each node,
Project demographic growth
Project electricity demand
Estimate construction/maintenance cost
Select electricity system via geospatial info



Computational core:
Network modeling

Estimate metrics for each node import scipy.stats

Find distance between lines
Project points onto lines
Find intersections between lines
Merge and simplify lines

import shapely

Store nodes and segments efficiently import sqlalchemy



Computational core:
Network modeling

Find distance between lines
Project points onto lines
Find intersections between lines
Merge and simplify lines

import shapely

import shapely.geometry as g
line1 = g.LineString([(0,0), (1,0)])
line2 = g.LineString([(0,1), (1,1)])

line1.distance(line2)



Computational core:
Network modeling

Find distance between lines
Project points onto lines
Find intersections between lines
Merge and simplify lines

import shapely

import shapely.geometry as g
line = g.LineString([(0,0), (1,0)])

line.interpolate(line.project(g.Point(0.5, 2)))



Computational core:
Network modeling

Find distance between lines
Project points onto lines
Find intersections between lines
Merge and simplify lines

import shapely

import shapely.geometry as g
line1 = g.LineString([(0,0), (1,0)])
line3 = g.LineString([(1,0), (1,1)])

line1.intersection(line3)



Computational core:
Network modeling

Find distance between lines
Project points onto lines
Find intersections between lines
Merge and simplify lines

import shapely

import shapely.geometry as g
import shapely.ops
line1 = g.LineString([(0,0), (1,0)])
line4 = g.LineString([(1,0), (2,0)])

shapely.ops.linemerge(line1.union(line4)).simplify(0)



Command-line

Parse arguments and options import optparse

Load and save configuration files import ConfigParser

Compress and uncompress data import ZipFile

Get script path os.path.abspath(__file__)



Web service

Build web service import pylons

Generate RESTful interface $ paster restcontroller

Render map with OpenLayers import osgeo.osr (PROJ.4)
import geojson

Serialize job in database import cPickle

Process jobs $ crontab



Scalable web service

Serve queues $ RabbitMQ

Put message on queue
Get message from queue import amqplib



Scalable web service

Web
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Producer Q
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Scalable web service

Web
server

Producer

Consumer

Consumer

Consumer

Consumer E U E U Q

Q U E U E



Scalable web service

Put message on queue

Get message from queue

Get data from storage



Tip from AMQP

Don’t tell people what to do

Train people how to do it



Take-away message



Take-away message

Question Where do people live?

Manual Send people with GPS devices
Click on houses in satellite images

Method Machine learning Image recognition

Command
line subprocess | Lush osgeo | GDAL      Generators

Scalable web Pylons | SQLAlchemy ampqlib |RabbitMQ



Take-away message

Question Where should we build infrastructure?

Manual Spreadsheets Java Desktop GIS

Method Mathematical 
modeling

Geospatial 
optimization Visualization

Command
line

numpy
scipy shapely | geos geojson | openlayers

osgeo | proj4

Scalable 
web Pylons | SQLAlchemy ampqlib |RabbitMQ
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Tutorials

Face-to-face PyCon OpenSpaces

Read tutorials
Request a topic invisibleroads.com



Links

Modi Research Group
Earth Insitute
Columbia University

modi.buildafrica.org

Computational and Biological Learning Lab
Courant Insitute of Mathematical Sciences
New York University

cs.nyu.edu/~yann

Tutorials & Workshops invisibleroads.com
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