
Teaching compilers with python

Matthieu Amiguet∗

January 30, 2010

In the University of Applied Sciences ARC, compilers are taught in a rel-
atively short amount of time. Focus is put on the main conceptual ideas,
leaving aside many technical details. Still, the students are expected to write
a full compiler within just a few weeks.
After trying the traditional C/Lex/Yacc based approach, and a more edu-

cation-oriented Java/Jaccie solution, we settled on Python and PLY plus a
few enhancements (syntax tree graphical representation, decorator to achieve
better code separation). As a result, the students get a better understanding
of the compiler concepts and produce more interesting and creative projects.

Contents

1 Introduction 2

2 Short reminder on compilers 3

2.1 General architecture . 3
2.2 Front end . 3
2.3 Back end . 4

3 Previous experience 4

3.1 First try: C/Lex/Yacc . 5
3.2 Second try: Java/Jaccie . 5

4 Requirements for a better solution 6

5 The solution: Python+PLY+some customization 6

5.1 PLY 101 . 6
5.1.1 Scanner . 7
5.1.2 Parser . 7

∗Institut des systèmes d'information et de communications (ISIC), Haute École Arc, Switzerland �
http://www.he-arc.ch/hearc/fr/isic/

1

5.2 Adding graphical representations . 9
5.2.1 AST representations . 9
5.2.2 Threading . 11
5.2.3 Discussion . 12

5.3 Getting good code separation . 13
5.3.1 The problem . 13
5.3.2 A decorator-based solution . 14
5.3.3 Discussion . 15

6 Results, from an educational point of view 15

7 Conclusion 16

1 Introduction

In the IT curriculum of the University of Applied Sciences ARC, compilers are taught
as a part of a wider teaching unit �Advanced Programming�. As a result, the amount of
time spent on this subject is relatively short: about 8 weeks, with 6×45 minutes sessions
per week � students are supposed to put in about as much work at home. About half
of the time in class is spent on theory, the other half being practical (tutorials and a
project). By the end of that part of the course, students are expected to have realized a
complete project using compiler techniques.
To achieve this rather ambitious goal, the teaching focuses on general compiler con-

cepts, leaving aside many fancy details about numerous parsing techniques, optimization
and such. Also, a strong focus is put on so-called �front-end� techniques (scanning, pars-
ing, semantic analysis, . . .) rather than �back-end� ones (interpretation, code generation,
optimization, . . .).
After successively trying solutions based on C/Lex/Yacc and Java/Jaccie, we �nally

settled on a Python/PLY combination with a few customizations. Our experience is that
with this last solution, students get a better understanding of compiler concepts and
produce more interesting and creative projects.
Note however that this last statement should be taken with some care. Similar claims

have been made before at PyCon [PE09], based on a relatively large number of students.
Our school being a very small school, we cannot provide any signi�cant numerical data;
the small number of students we have only allows us to make some qualitative claims
about the gain we observe.
This paper is organized as follows: section 2 is a very short reminder of the main

compiler concepts. Section 3 summaries the other solutions we tried before settling
on the one we present here; section 4 presents the requirements we had for a better
solution. The core of the paper is section 5, where we present the solution we are
currently using. Section 6 discusses the pedagogical results of this approach before some
concluding remarks in section 7.

2

Front End

Back End

Scanning Parsing Semantic Analysis

In te rmedia te represen ta t ion

Analysis Optimisation Code generat ion

Figure 1: Simpli�ed structure of a compiler

2 Short reminder on compilers

This section brie�y presents the main compiler concepts used in this paper. For more
details, refer to one of the many available compiler textbooks [ASU06, GBJL00, Med08]
or the more language-oriented references [Sco05, Ste07].

2.1 General architecture

Compilers are generally structured in two parts:

The front end analyzes the source code to produce a complete, veri�ed internal repre-
sentation of the program. This so-called intermediate representation typically takes
the form of a tree (usually called an Abstract Syntax Tree � AST for short) or some
kind of idealized machine language.

The back end analyzes this intermediate representation, performs a number of opti-
mizations and �nally generates code into the target language. In the case of an
interpreter, this very last step is replaced by direct execution.

Figure 1 presents a somewhat simpli�ed structure of a general compiler. Note that
the same front end techniques can be used for a compiler, an interpreter, a document
generator, etc. However, the backend techniques will vary much more depending on the
application.

2.2 Front end

The front end is traditionally composed of (at least) three parts:

The scanner (or lexer, or lexical analyzer) breaks the source code text into small, atomic
pieces called tokens. Tokens are roughly the equivalent of words in natural lan-
guages (or lexemes in linguistics).

3

The parser (or syntax analyzer) identi�es the (syntactic) structure of the sequence of
lexemes. This phase typically builds a tree, called an Abstract Syntax Tree, or
AST. In natural languages, this would correspond to identifying the grammatical
structure of a text.

The semantic analyzer is more concerned with the �meaning� of the program. This may
involve, e.g.

• Type checking: in some languages, a statement like int i = 0.1 might be
syntactically correct, but meaningless (semantically incorrect).

• Object binding: to execute a statement like foo.bar(), the compiler must
link the name foo to an object in memory and possibly determine which of
the many bar() methods de�ned in the program this invocation should call.

• Checking that variables are always assigned before they are used.

• . . .

2.3 Back end

The backend takes a complete, veri�ed representation of a program as input. It can then:

• execute the program's instructions immediately. Such a �compiler� is rather called
an interpreter.

• generate another � more �executable� � representation of the program. This last
representation can be machine language, assembler, �bytecode� for a virtual ma-
chine, etc.

3 Previous experience

A few years ago, various institutional changes lead us to rethink our compiler course from
scratch. A few choices we've made at that time are:

• Strong focus on practice. Students must be able to produce a working compiler-like
program, even if they cannot tell if a grammar is LL(1) or not o� the top of their
head.

• Focus on front-end techniques. The course will be much more about scanners
and parsers than, say, about assembler, esoteric addressing modes and keeping the
CPU's pipeline full.

• Use code generators. It's important to understand what they are doing under the
hood, but in many real situations, you don't write a compiler's front end from
scratch, you generate it from a higher-level description using a so-called compiler-
compiler.

4

As told in the introduction, the course is about 50% practice and 50% theory. However,
this paper concentrates only on the choices made and tools developed for the practi-
cal part. Note that the interested reader can �nd both the practical and theoretical
supporting material on the author's website [Ami10].

3.1 First try: C/Lex/Yacc

The �rst solution we experienced was using the traditional C/Lex/Yacc tool combina-
tion. This seemed a good idea, because these are robust, proven, real-world tools, thus
providing a realistic situation for the students to learn.
However, in our case, we quickly found that this solution had major shortcomings:

• Although Lex and Yacc allow to code the lexer and the scanner separately, these
two steps are quite di�cult to run separately. This makes it both more di�cult to
understand clearly what each step does and more di�cult to debug.

• C is a rather low-level language. This means students spent a lot of time chasing
memory leaks, trying to implement associative arrays (or even sometimes linked
lists. . .). More time spent on generic programming problems means less time spent
on understanding compilers concepts � and less interesting projects.

3.2 Second try: Java/Jaccie

After this �rst experience, we looked for tools in a higher-level language � and providing
better debug facilities. Java looked like a good choice, as our students had some experi-
ence in that language. Among the Java-based solutions was the educational tool Jaccie,
and we decided to give it a try.
Jaccie [Sch04] is an interactive environment aimed at illustrating the main compiler

phases by implementing them in Java. Jaccie has many good points:

• Code organized into well-de�ned phases: scanner, parser, evaluator.

• It's easy to see what data goes in and out of these phases.

• Some useful tools are provided, like automatic AST building from a grammar spec-
i�cation, with an ASCII representation (this last feature proved much more useful
to the students than we �rst thought).

• It's Java, so you get memory management, HashTables, . . .

We used Jaccie for two years, but we were more and more aware of some drawbacks of
this solution:

• The swing-based GUI is slow to use (too much time spent on �guring what to drag-
and-drop where in what order to make it work); the user is stuck with a sub-optimal
built-in code editor.

5

• The compiler structure is �xed: scanner, parser, evaluator. The semantic analysis
must be performed using attributed grammars, which was not the technique we
wanted to focus on.

• Use from the IDE is tedious, but it is no easier to produce a stand-alone appli-
cation. This did not encourage students to make many tests with the compilers
they developed. Also, students had obviously much more the feeling that they were
doing an exercise, detached from reality, than with the previous solution.

• The whole IDE is buggy. Not too much so, but enough to be rather annoying.

• Development seems to have stopped in 2004.

4 Requirements for a better solution

So we decided to try yet another solution. The �rst two attempts allowed us to be a
little more precise in our requirements, in addition to what has been mentioned in the
beginning of section 3:

• Good code separation between main parts (scanner, parser, . . .)

• Possibility to (easily) see what data is �owing between these parts

• Possibility to generate textual and/or graphical representations of AST's

• High-level programming language

• Ability to (easily) produce standalone applications

• Mature, maintained, cross-platform

5 The solution: Python+PLY+some customization

The requirements above led us to consider PLY [Bea09], a python-based reimplementa-
tion of Lex and Yacc. The remainder of this paper discusses the solution we developed
based on this tool and the results obtained.

5.1 PLY 101

PLY (Python Lex-Yacc) is a pure-python implementation of Lex and Yacc. Unlike the
original tools however, it doesn't require a separate explicit code-generation step: a heavy
(and rather clever) use of re�ection allows on-the �y code generation. This allows for
very quick write-and-test cycles.

6

5.1.1 Scanner

Here is an example of a complete scanner implementation in PLY for lexing parenthesized
arithmetic expressions with �oating points numbers (e.g. 12.3*(3-4)):

1 import ply . lex as lex

3 tokens = (
'NUMBER' ,

5 'ADD_OP' ,
'MUL_OP'

7)

9 literals = ' () '

11 t_ADD_OP = r ' [+−] '
t_MUL_OP = r ' [∗ /] '

13

def t_NUMBER (t) :
15 r ' \d+(\.\d+)? '

t . value = float (t . value)
17 return t

19 def t_newline (t) :
r ' \n+'

21 t . lexer . lineno += len (t . value)

23 t_ignore = ' \ t '

25 def t_error (t) :
print " I l l e g a l cha rac t e r '%s ' " % t . value [0]

27 t . lexer . skip (1)

29 lex . lex ()

31 i f __name__ == '__main__ ' :
lex . runmain ()

As expected, tokens are speci�ed using regular expressions; naming conventions allow
to use plain variable a�ectations to de�ne simple tokens (see lines 11-12). A somewhat
unusual use of docstrings makes it easy to manipulate token values (or even types) when
they are recognized (lines 14-17). Several shortcuts are available, e.g. to specify one-
character tokens in a compact manner (line 9) or ignore certain characters (line 23).

5.1.2 Parser

This is an example of a complete parser implementation, based on the scanner above,
that evaluates an arithmetic expression, complete with parentheses, operator precedence
and unary plus and minus:

7

import ply . yacc as yacc

2

from scanner import tokens

4

operations = {
6 '+ ' : lambda x , y : x+y ,

'− ' : lambda x , y : x−y ,
8 ' ∗ ' : lambda x , y : x∗y ,

' / ' : lambda x , y : x/y ,
10 }

12 def p_expression_op (p) :
' ' ' e xp r e s s i on : exp r e s s i on ADD_OP expr e s s i on

14 | e xp r e s s i on MUL_OP expr e s s i on ' ' '
p [0] = operations [p [2]] (p [1] , p [3])

16

def p_expression_num (p) :
18 ' e xp r e s s i on : NUMBER'

p [0] = p [1]
20

def p_expression_paren (p) :
22 ' ' ' e xp r e s s i on : ' (' e xp r e s s i on ') ' ' ' '

p [0] = p [2]
24

def p_minus (p) :
26 ' ' ' e xp r e s s i on : ADD_OP expr e s s i on %prec UMINUS ' ' '

p [0] = operations [p [1]] (0 , p [2])
28

def p_error (p) :
30 print "Syntax e r r o r in l i n e %d" % p . lineno

yacc . errok ()
32

precedence = (
34 (' l e f t ' , 'ADD_OP') ,

(' l e f t ' , 'MUL_OP') ,
36 (' r i g h t ' , 'UMINUS ') ,

)
38

yacc . yacc ()
40

i f __name__ == "__main__" :
42 expr = raw_input ('> ')

result = yacc . parse (expr)
44 print result

Again, docstring are used, somewhat unusually, to bind grammar rules to functions
(see e.g. lines 12-15). The e�ects of reductions can be described very conveniently in the
function body, using the special p list-like parameter: p[0] corresponds to the value of
the �rst symbol in the rule, p[1] to the next one, etc.

8

Simple shift-reduce con�icts can be solved with precedence rules (lines 33-37). To deal
with more complex cases, a very detailed parsing log can be generated (which should be
read �with an appropriately high level of ca�eination�, as the doc states!).

Of course these examples only scratch the surface of what PLY can do. However, they
should be enough to get an idea of the power of this module.

5.2 Adding graphical representations

5.2.1 AST representations

PLY provides almost everything stated in section 4, with the notable exception of the
generation of graphical AST representation. This is no surprise, as PLY is completely
agnostic about what to do when parsing: it doesn't even provide any AST construction
tool.
That's why we decided to provide our students with a set of classes that allows them

to easily construct an AST and generate graphical representations of it.
The core of the implementation is the Node class. A Node is simply a container for a

list of children with a unique ID (the next attribute will be useful for threading in section
5.2.2):

class Node :
count = 0
type = 'Node (un sp e c i f i e d) '
shape = ' e l l i p s e '
def __init__ (self , children=None) :

self . ID = str (Node . count)
Node . count+=1
i f not children : self . children = []
e l i f hasattr (children , '__len__ ') :

self . children = children

else :
self . children = [children]

self . next = []

De�ning new nodes types is simply a matter of rede�ning the type attribute, and
possibly overloading the construction and representation methods:

class ProgramNode (Node) :
type = 'Program '

class TokenNode (Node) :
type = ' token '
def __init__ (self , tok) :

Node . __init__ (self)
self . tok = tok

def __repr__ (self) :
return repr (self . tok)

9

toto = 12∗−3+4;
a = toto+1; a∗2

Program

| =

| | 'toto'

| | + (2)

| | | * (2)

| | | | 12.0

| | | | - (1)

| | | | | 3.0

| | | 4.0

| =

| | 'a'

| | + (2)

| | | 'toto'

| | | 1.0

| * (2)

| | 'a'

| | 2.0

Program

=

0

=

1

* (2)

2

’toto’

0

+ (2)

1

* (2)

0

4.0

1

12.0

0

- (1)

1

3.0

’a’

0

+ (2)

1

’toto’

0

1.0

1

’a’

0

2.0

1

Figure 2: A source code and its AST, in ASCII and graphical representation

It is then straightforward to generate ASCII representations of the trees:

class Node :
[. . .]
def asciitree (self , prefix=' ') :

result = "%s%s\n" % (prefix , repr (self))
prefix += ' | '
for c in self . children :

i f not isinstance (c , Node) :
result += "%s ∗∗∗ Error : Child o f type %r : %r \n" \

% (prefix , type (c) , c)
continue

result += c . asciitree (prefix)
return result

The result is usable, as shown in �gure 2. However, when the trees get very large, this
representation is barely readable.
To generate better representations, we make use of the excellent software Graphviz,

that we access via its python binding pydot. With these tools, it's surprisingly easy to
generate a full graphical representation of a tree using a recursive method:

class Node :
[. . .]
def makegraphicaltree (self , dot=None , edgeLabels=True) :

i f not dot : dot = pydot . Dot ()

10

dot . add_node (pydot . Node (self . ID , label=repr (self) , \
shape=self . shape))

label = edgeLabels and len (self . children)−1
for i , c in enumerate (self . children) :

c . makegraphicaltree (dot , edgeLabels)
edge = pydot . Edge (self . ID , c . ID)
i f label :

edge . set_label (str (i))
dot . add_edge (edge)

return dot

Now, by replacing direct evaluation like in

def p_expression_op (p) :
' ' ' e xp r e s s i on : exp r e s s i on ADD_OP expr e s s i on

| exp r e s s i on MUL_OP expr e s s i on ' ' '
p [0] = operations [p [2]] (p [1] , p [3])

by the construction of a tree

def p_expression_op (p) :
' ' ' e xp r e s s i on : exp r e s s i on ADD_OP expr e s s i on

| exp r e s s i on MUL_OP expr e s s i on ' ' '
p [0] = AST . OpNode (p [2] , [p [1] , p [3]])

the result of the yacc.parse method is a Node object representing the root of the AST.
Simple code such as

result = yacc . parse (source_code)
graph = result . makegraphicaltree ()
graph . write_pdf (AST_filename)

produces a nice graphical output as in �gure 2.

5.2.2 Threading

One of the fundamental - and relatively tricky - techniques of semantic analysis is called
threading.
Threading an AST amounts to superimposing a second structure on top of the tree

structure. This second structure represents the control �ow of the program. Roughly
speaking, this is the order in which the nodes of the tree will be executed.
As it seems to be di�cult for some students to work with two di�erent structures on

the same set of nodes, we extended our class Node to include the possibility of threading
the tree, and generating a representation of the two structures simultaneously.
This is the code for graphically threading an existing AST:

class Node :
[. . .]
def threadTree (self , graph , seen = None , col=0):

colors = (' red ' , ' green ' , ' b lue ' , ' ye l low ' , 'magenta ' , ' cyan ')
i f not seen : seen = []
i f self in seen : return

11

seen . append (self)
new = not graph . get_node (self . ID)
i f new :

graphnode = pydot . Node (self . ID , label=repr (self) , \
shape=self . shape)

graphnode . set_style (' dotted ')
graph . add_node (graphnode)

label = len (self . next)−1
for i , c in enumerate (self . next) :

i f not c : return

col = (col + 1) % len (colors)
color = colors [col]
c . threadTree (graph , seen , col)
edge = pydot . Edge (self . ID , c . ID)
edge . set_color (color)
edge . set_arrowsize (' . 5 ')
Edges corresponding to the th read ing o f the AST
are ignored in the graph l ayou t . The AST w i l l have a
" standard " appearance , but the th read ing edges might
take weird rou t e s . I f we comment t h i s l i n e out ,
the genera l l a you t w i l l be much be t t e r , but the AST
w i l l be much l e s s r e c o gn i s a b l e . . .
edge . set_constraint (' f a l s e ')
i f label :

edge . set_taillabel (str (i))
edge . set_labelfontcolor (color)

graph . add_edge (edge)

Figure 3 shows the kind of results obtained with this code.

5.2.3 Discussion

The AST graphical representation works very well. It allows inspecting relatively complex
trees without problems. The variety of output formats provided by Graphviz is often
appreciated by the students. For exploring very large trees, a more interactive solution
could be needed, but in the context of our course, we can often limit ourselves to small
to medium trees.
There are some problems with the threaded version though. In order to keep the tree

recognizable, we freeze its layout before we add the threading edges. This sometimes
results in weird layouts for these edges and for the nodes added at this stage. We added
colors to make it easier to read, but there is de�nitely some place for improvement here.
However, we found that even with a sub-optimal layout, these graphs help students to
visualize what they are doing.

12

a=0;

while (a-10) {

print a;

a = a+1

}

Program

=

0

while

1

’a’

0

0.0

1

’a’

1

- (2)

0

Program

1

’a’

0

0

10.0

1

print

0

=

1

’a’

0

+ (2)

1

’a’

0

1.0

1

ENTRY

Figure 3: A source code and the corresponding threaded AST

5.3 Getting good code separation

5.3.1 The problem

The approach based on the Node class above works very well for generating graphics,
but it breaks the code separation that was a requirement in section 4.
Of course, the scanner and the parser can still reside each in their own �le, but every-

thing that is made after parsing will very likely end up being implemented as a method
of a subclass of the Node class. With this approach, the semantic analyzer and the whole
back end of the compiler will be scattered over the Node subclasses hierarchy.
This will not only make it more di�cult for the students to make a clear conceptual

distinction between those treatments, but also this approach discourages them from
experimenting with various implementations of the same treatment.
For instance, suppose we want to implement a recursive and an iterative version of an

interpreter. We would �rst implement a series of execute() methods for the di�erent
node types. For the second version, we would have either to use a di�erent method name
(possibly necessitating modi�cation in some client code), subclass every node type, or
maintain a separate version of the code for the alternate implementation, with much of
the base code duplicated.

13

Class AST Semantic analyzer Interpreter Compiler

BlockNode __init__(),
__draw__(), . . .

thread() execute() compile()

StatementNode __init__(),
__draw__(), . . .

thread() execute() compile()

.

Figure 4: Two-dimensional separation of concern in a compiler

5.3.2 A decorator-based solution

The problem stated above is a particular example of a general problem about the so-called
Separation of Concerns: The decomposition of a problem into concerns usually results
in concerns crosscutting one another. Choosing any main decomposition along some
concerns (e.g. a class hierarchy) usually scatters other concerns over this decomposition.
In our case, we clearly have a two-dimensional decomposition with classes on one axis
and the compiler's various phases on the other, as suggested in �gure 4.
The solution we chose for our compilers course is very simple, yet quite powerful. We

write a simple decorator as follows:

def addToClass (cls) :
def decorator (func) :

setattr (cls , func . __name__ , func)
return func

return decorator

This decorator allows us to easily add a method to a class from outside the class
de�nition, even from a another module if desired.
With this decorator, a recursive interpreter implementation could look like this:

import AST

from AST import addToClass

@addToClass (AST . ProgramNode)
def execute (self) :

for c in self . children :
c . execute ()

@addToClass (AST . OpNode)
def execute (self) :

args = [c . execute () for c in self . children]
i f len (args) == 1 :

args . insert (0 , 0)
return reduce (operations [self . op] , args)

@addToClass (AST . WhileNode)
def execute (self) :

while self . children [0] . execute () :
self . children [1] . execute ()

14

[. . .]

i f __name__ == "__main__" :
from parser import parse

import sys

prog = file (sys . argv [1]) . read ()
ast = parse (prog)

ast . execute ()

Now if we want to try and implement an iterative interpreter, we would only need to
make a new �le with alternate de�nitions of the execute method. No name changing, no
subclassing everywhere, no code duplication; it's simply a matter of importing the right
�le in the client code.

5.3.3 Discussion

The approach presented above, which could be seen as a very basic form of Aspect
Oriented Programming, works very well in many practical situations.
A drawback is that a method decorated with the addToClass decorator still exists in

the namespace where it was de�ned. This is de�nitely not very elegant, and may cause
some unexpected behaviour when the method name shadows a name in the current
namespace. It may also confuse some code checking tools like pychecker.
We are not aware of any way to avoid this side e�ect. However, if we avoid using

con�icting names for methods, this is a minor drawback, and we �nd this decorated-
based solution to be very useful.

6 Results, from an educational point of view

The solution presented in section 5 is both easier than the C/Lex/Yacc we �rst tried and
more stable and mature than the Java/Jaccie one.
This means that the students get more time to understand the concepts and develop

interesting projects. Also, concepts as AST and threading bene�t very much from the
possibility of getting graphical representations. At the end-of-year exam, we found the
students to be much more at ease with these concepts after we introduced this new
approach.
We tend to allow a lot freedom regarding the kind of project developed by the students

in this course, as long as it's making a signi�cant use of the compiler techniques we
studied. A completely unexpected side-e�ect of using python in this course is that the
richness of the libraries, combined with the high productivity of the language, allow for a
very wide range of projects, some of which are quite mature when considering the short
time available. Among others, we've seen

• compilers producing code for existing virtual machines (parrot), for custom-made
virtual machines, or for a micro-controller;

15

Figure 5: A prototype of a parser log visualizer

• some compilers targeting high-level languages, but adding features like simple par-
allelism;

• a variety of programs producing SVG pictures of PDF documents from document
description languages;

• an interpreter for a language specialized in producing interactive stories for children
(with a PyGame backend);

• an interpreter allowing experimentation with collective behaviors by controlling
cars and trucks in a grid (PyGame backend) in the spirit of NetLogo;

• . . .

A few examples are available for download on the author's website [Ami10].

7 Conclusion

Three years after launching the Python/PLY approach in our compilers course, we are
still very pleased with the results. Students don't spend too much time trying to under-
stand how to use the tools we give them, and have more time to understand the concepts
and produce nice and creative results.
This was also a great opportunity to introduce the python language in the curriculum,

which allows the students to discover an alternative to other major object-oriented high-
level languages they have studied earlier.
The tools we have put together meet the requirements we have for this course. Our

plans for the future are de�nitely based on the existing solution, with the following
enhancements:

• Migration to Python 3.x

16

• Find a solution to the namespace pollution problem of the addToClass decorator
discussed in section 5.3.3.

• The current implementation of the Node hierarchy often relies on child order instead
of explicit semantics (e.g. an 'If' Node must have three children that correspond
to the condition, the 'then' part and the 'else' part respectively). A more explicit
approach would be preferable.

Also, in the present state, the visualization tools only allow to see the result of the parsing
and threading algorithms. It could be very useful to have a tool allowing to investigate the
progress of those algorithms. A master student, David Jacot, has developed a prototype
of a software providing a visualization of a parser log �le. A screenshot is shown in �gure
5. This is still in an early stage of development, but a complete version could probably
save a considerable amount of ca�eine when debugging a grammar!

References

[Ami10] Matthieu Amiguet. Matthieu Amiguet's website [french]. http://www.

matthieuamiguet.ch, 2010.

[ASU06] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers: Principles,

Techniques, and Tools. Addison-Wesley, 2006.

[Bea09] David M. Beazley. PLY (Python Lex-Yacc). http://www.dabeaz.com/ply,
2009.

[GBJL00] D. Grune, H. Bal, C. Jacobs, and K. Langendoen. Modern Compiler Design.
Wiley, 2000.

[Med08] Alexander Meduna. Elements of Compiler Design. Auerbach Publications,
2008.

[PE09] Bill Punch and Rich Enbody. Python for CS1 Not Harmful to CS Ma-
jors (and good for everyone). http://us.pycon.org/media/2009/talkdata/
PyCon2009/008/pycon09-Punch_.pdf, 2009.

[Sch04] Lothar Schmitz. Visual syntax tools. http://www2.cs.unibw.de/Tools/

Syntax/english/index.html, 2004.

[Sco05] Michael L. Scott. Programming Language Pragmatics. Morgan Kaufmann,
2005.

[Ste07] D. E. Stevenson. Programming Language Fundamentals by Example. Auerbach
Publications, 2007.

This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 2.5 Switzer-

land License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/

2.5/ch/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California,

94105, USA.

17

