
Eventlet
Asynchronous I/O with a
Synchronous Interface

Donovan Preston

Network
Servers

Processes, Threads, or Non-Blocking I/O?

The C10K Problem

• http://www.kegel.com/c10k.html
• “It's time for web servers to handle ten

thousand clients simultaneously, don't
you think?”

http://www.kegel.com/c10k.html
http://www.kegel.com/c10k.html

Processes, Threads,
Non-Blocking I/O

• Processes

• Too heavyweight

• Threads

• Non-determinism sucks

• Non-Blocking I/O

• Requires callback-style programming

• Rules out many existing libraries

Solution: Coroutines

• Callbacks: Register a callback function
and then Return to the main loop

• Coroutines: Register a callback
coroutine and then Call the main loop
• The call stack is preserved
• Does not require cooperation

from the caller

Solution: Greenlet

• Greenlet Provides Hard Switching from
Stackless in a Regular Python Module

• Stack Slicing is used to implement
coroutine switching
• Portions of the C Stack are copied to

the Heap and vice versa

Eventlet
Green Threads on top of Greenlet

Green Threads:
Lightweight Threads

• Regular POSIX threads are Preemptive
• Non-Deterministic

• Green Threads are Cooperative
• Deterministic

• Green Threads use much less memory

0

12500

25000

37500

50000

0 1250 2500 3750 5000

Memory Usage
M

em
or

y
U

sa
ge

 (K
B)

Number of Contexts
forking threading eventlet

0

0.075

0.150

0.225

0.300

0 250 500 750 1000

Time
Ti

m
e

(S
ec

on
ds

)

Number of Contexts
forking threading eventlet

Spawning a Green
Thread

• spawn(

! func,

! *args,

! **kwargs)

Cooperating:
Voluntarily Yielding

• sleep()

• “Run something
else, then switch
back to me as
soon as possible”

• sleep(1)

• “Switch to me
after 1 second” Outputs:

Synchronization: Event

• One sender,
multiple waiters

• One use

• Output:

Synchronization: Queue

• Multiple senders,
multiple waiters

• Multiple use

• Output:

Concurrency Control:
Pool

• Pools can be used to
limit concurrency

• Output:

eventlet.green
Cooperative Sockets

eventlet.green:
Cooperative Sockets

• Same interface as socket.socket
• Instead of blocking, the cooperative

socket switches to the main loop
• Main loop runs select (or poll, etc) and

switches back to suspended coroutine
when I/O is ready

Socket Example

Sockets Have Implicit
Cooperation Points

• Any API which would normally block
cooperates instead
• connect
• read
• write
• etc.

Emulated Modules

• asyncore

• BaseHTTPServer

• httplib

• os

• select

• socket

• SocketServer

• ssl

• subprocess

• thread

• threading

• time

• urllib

• urllib2

Patching Other
Libraries to Cooperate

• Import one module patched with
cooperative sockets

• patcher.import_patched

• Monkeypatch sys.modules globally

• patcher.monkey_patch

Release Schedule

• Releasing 0.9.5 today
• Cleanup release

• Sprinting this week
• 1.0 release soon!

Spawning
WSGI Server Written Using Eventlet

Spawning:
Highly Configurable

• Can be configured to use:
• Multiple OS Processes
• Multiple POSIX Threads
• Green Threads

• And various combinations of the three

Spawning:
Designed for COMET

• “Real Time” web applications are
finally becoming popular

• Servers must keep open one connection
per active user

• When Spawning is configured to use
eventlet’s green threads it is perfect for
COMET

Summary

Eventlet

• High Scalability Non-Blocking I/O
• True Coroutines using Greenlet
• Green Threads with Scheduler
• Cooperative socket Implementation
• Easy to Integrate with Existing

Libraries

Eventlet in Production

• In production at Linden Lab
(Second Life) since 2006

• Handles a huge amount of traffic

Q&A

