
Demystifying
Non-blocking and
Asynchronous I/O

PyCon 2010, Hyatt Regency Atlanta
Peter Portante

What’s the Problem?
I am not able to meet my I/O demands
using the code I have written
I have chosen to use an elegant
framework that is not helping
My application is coded simply in a
sequential, understandable manor, what
should I do?

Somebody Told Me...
to just use asynchronous I/O
“You ought to use non-blocking I/O”
“Why don’t you just switch to
using ... , that will solve your scaling
problems”

asyncore, Twisted, Tornado, PyEv

But, but, ...

What does non-blocking I/O mean?
What is non-blocking compared to
asynchronous I/O?
What is involved when using that kind
of I/O in my library or application?

It’s All Ball Bearings
Let’s first look at how I/O is performed
under Linux

Very high level, buffered only
Agree on some definitions
Talk about I/O Multiplexing and Event
driven programming
Talk about what non-blocking vs.
asynchronous means

Buffered I/O - 40,000’
File descriptor has memory buffers for
reading and writing

buf

Kernel SpaceUser Space

buf
D
e
v

read(fd, len)

write(fd, len) buf

input

output

Blocking I/O
(Synchronous)

“An I/O operation that may itself cause
the requesting thread of execution to be
blocked from further use of the
processor.”
This implies that the thread of
execution and the I/O operation run
sequentially

read(fd, len) - blocks < len data in kernel buffer

write(fd, len) - blocks < len empty space in kernel buffer

Blocking I/O
(cont’d)

buf

Kernel SpaceUser Space

buf
D
e
v

read(fd, len)

write(fd, len)

input

outputbuf

Blocking I/O Timeline

User Space
Kernel Space

Time

Blocked

read()

Parameters
Checked

No Data Data
Arrives

Fulfilled

T1T0 T2 T3 T4

Blocking I/O Example
import os
msg = ""
while True:
 if msg == "exit":
 os.write(1, "Goodbye\n")
 break
 elif msg:
 os.write(1, "Hello [%s]\n" % msg)
 msg = ""
 os.write(1, ":")
 while True:
 val = os.read(0, 4)
 if val[-1] == '\n':
 msg += val[:-1]
 break
 msg += val

Non-blocking I/O
(Still Synchronous!)

An I/O operation that is only initiated if it does
not of itself cause the thread of execution
requesting the I/O to be blocked from further use
of the processor
Implies that the thread of execution and the I/O
operation still run sequentially
Implies that the thread of execution will be
notified when an I/O operation is not initiated, or
partially initiated

An attribute of the FD which changes its behavior
When enabled, read(fd, len)/write(fd, len) returns
EWOULDBLOCK if it cannot read/write any data, otherwise the
count of bytes

Non-blocking I/O
(cont’d)

buf

Kernel SpaceUser Space

buf
D
e
v

read(fd, len)

write(fd, len)

input

outputbuf

Non-blocking I/O Timeline

User Space
Kernel Space

Time

read()

Parameters
Checked

No Data Data
Arrives

Fulfilled

T1T0 T2 T3 T4

read()

Parameters
Checked

T5 T6

100,000 digits
of Py

Non-blocking I/O 1st Example
import os, fcntl
ofl = fcntl.fcntl(0, fcntl.F_GETFL)
fcntl.fcntl(0, fcntl.F_SETFL, ofl | os.O_NONBLOCK)
msg = ""
while True:
 if msg == "exit":
 os.write(1, "Goodbye\n"); break
 elif msg:
 os.write(1, "Hello [%s]\n" % msg); msg = ""
 os.write(1, ":")
 import time; time.sleep(1)
 while True:
 val = os.read(0, 4)
 if val[-1] == '\n':
 msg += val[:-1]
 break
 msg += val

Non-blocking I/O 2nd Example
import os, fcntl
ofl = fcntl.fcntl(0, fcntl.F_GETFL)
fcntl.fcntl(0, fcntl.F_SETFL, ofl | os.O_NONBLOCK)

try:
 msg = ""
 while True:
 if msg == "exit":
 os.write(1, "Goodbye\n")
 break
 elif msg:
 os.write(1, "Hello [%s]\n" % msg)
 msg = ""
 os.write(1, ":")
 while True:

 val = nread(fd=0, length=4)
 if val[-1] == '\n':
 msg += val[:-1]
 break
 msg += val

finally:
 fcntl.fcntl(0, fcntl.F_SETFL, ofl)

2nd Example (cont’d)
def nread(fd=None, length=None):
 import time, errno
 val = None
 while val is None:
 try:
 val = os.read(fd, length)
 except OSError, e:
 if e.errno != errno.EWOULDBLOCK:
 raise
 if val is None:
 time.sleep(1)
 return val

Wait ... that is Ugly!

Yes, a non-blocking FD is not the whole
story
Let’s talk

I/O Multiplexing
Event Driven I/O Models

I/O Multiplexing
The kernel offers poll()
You ask for which FDs are ready for I/O
Returns a list flagged w/ read/write
If none ready, can ask to:

wait indefinitely
wait for a period of time
return immediately

Event Driven I/O Models

The readiness of an FD for I/O is often
referred to as an event
Libraries and frameworks supporting
event driven I/O typically allow you to
register a callback for a particular
event on an FD

I/O Multiplexor Example
class _IoManager(object):
 def __init__(self):
 self.fd_flags = {}
 self.fd_ctx = {}
 self.poll = select.poll()
 def manage(self):
 ...
 def register(self, fd=None, op=None, ctx=None):
 ...
 def unregister(self, fd=None, op=None):
 ...
iomanager = _IoManager()

I/O Multiplexor Example

Context object can be anything that has
a ready method accepting two
parameters

A file descriptor
Flag for what the FD is ready for

I/O Multiplexor Example
def register(self, fd=None, op=None, ctx=None):
 if fd is not None:
 ofl = fcntl.fcntl(fd, fcntl.F_GETFL)
 self.fd_flags[fd] = ofl
 fcntl.fcntl(fd, fcntl.F_SETFL,
 ofl | os.O_NONBLOCK)
 self.fd_callbacks[fd] =
 {op:{'fd':fd,'ctx':ctx}}
 if op == 'read':
 pollop = select.POLLIN
 else:
 pollop = select.POLLOUT
 self.poll.register(fd, pollop)

I/O Multiplexor Example
def unregister(self, fd=None, op=None):
 if fd is None:
 return
 del self.fd_callbacks[fd][op]
 if self.fd_callbacks[fd]:
 return
 del self.fd_callbacks[fd]
 self.poll.unregister(fd)
 if fd in self.fd_flags:
 ofl = self.fd_flags[fd]
 del self.fd_flags[fd]
 fcntl.fcntl(fd, fcntl.F_SETFL, ofl)

I/O Multiplexor Example
def manage(self):
 try:
 while self.fd_callbacks:
 cbs = []; fds = self.poll.poll()
 for fd, eventmask in fds:
 if eventmask & select.POLLIN:
 cb = self.fd_callbacks[fd]['read']
 cbs.append(('read', cb))
 if eventmask & select.POLLOUT:
 cb = self.fd_callbacks[fd]['write']
 cbs.append(('write', cb))
 for op, cb in cbs:
 cb['ctx'].ready(cb['fd'], op)
 finally:
 for fd, ofl in self.fd_flags.items():
 fcntl.fcntl(fd, fcntl.F_SETFL, ofl)

I/O Multiplexor Example
from nonblockio import iomanager; import os

class MyFD(object):
 def __init__(self, fd):
 self._fd = fd
 self._readBuf = ""; self._writeBuf = ""
 def ready(self, fd, op):
 if op == 'read':
 self._readBuf = os.read(fd, 20)
 elif op == 'write':
 cnt = os.write(fd, self._writeBuf, 20)
 self._writeBuf = self._writeBuf[cnt:]

iomanager.register(0, 'read', MyFD(0))
iomanager.register(1, 'write', MyFD(1))
iomanager.manage()

Here’s the Rub

I/O multiplexing still means it is
synchronous I/O
Once the kernel’s buffers fill up, not
much is going to happen until a read()
or a write() system call is made

So What is Asynchronous
I/O then?

The cause of an event is asynchronous
to the application
The handling of an event is performed
synchronously
That means the act of reading and
writing data from/to the kernel still
occurs synchronously

How ‘bout them Apples?
So if your thread of execution:

is involuntarily context switched
page faults
blocks on a mutex or semaphore
goes compute bound

All I/O stops being issued until control is
restored to the I/O polling event loop

So Why is it “Better”
The primary reason is memory usage

Blocking I/O requires one thread of execution for each FD
That has a “large” execution stack
Kernel has a number of data structures need to
manage threads of execution

Context switching threads of execution means lots of
memory references
Contrast that to an object describing an FD

I/O Multiplexor Context
class MyFD(object):

 def __init__(self, fd):
 self._fd = fd
 self._readBuf = ""
 self._writeBuf = ""

 def ready(self, fd, op):
 if op == 'read':
 self._readBuf = os.read(fd, 20)
 elif op == 'write':
 cnt = os.write(fd, self._writeBuf, 20)
 self._writeBuf = self._writeBuf[cnt:]

So Why Else is it
“Better”?

You can drive lots of I/O
Without involving threads

Avoids the effects of the GIL
Without using multiple processes

Don’t have to manage shared memory

Non-blocking I/O
Services

C implementations w/ Python wrappers

libev
(http://software.schmorp.de/pkg/libev.html)

pyev
(http://code.google.com/p/pyev/)

libevent
(http://www.monkey.org/~provos/libevent/)

pyevent (not updated since 2007)
(http://code.google.com/p/pyevent/)

http://software.schmorp.de/pkg/libev.html
http://software.schmorp.de/pkg/libev.html
http://code.google.com/p/pyev/
http://code.google.com/p/pyev/
http://www.monkey.org/~provos/libevent/
http://www.monkey.org/~provos/libevent/
http://code.google.com/p/pyevent/
http://code.google.com/p/pyevent/

Non-blocking I/O
Frameworks/Libraries

Tornado (http://www.tornadoweb.org/)

Twisted (http://twistedmatrix.com/trac/)

asyncore (http://docs.python.org/library/
asyncore.html)

http://www.tornadoweb.org
http://www.tornadoweb.org
http://docs.python.org/library/asyncore.html
http://docs.python.org/library/asyncore.html
http://docs.python.org/library/asyncore.html
http://docs.python.org/library/asyncore.html

Lemme Sum Up
Non-blocking I/O involves an I/O
multiplexor to create an event driven
mechanism
I/O readiness events

occur asynchronously
handled synchronously

Benefits are increased scalability
Costs are complexity and the use of an
event driven model

Questions?

Books/Web
"Programming with POSIX Threads" by David R. Butenhof

"Unix Network Programming : Networking APIs: Sockets and
XTI" by W. Richard Stevens

"Advanced Programming in the UNIX Environment" by W. Richard
Stevens w/ Stephen A. Rago

"The Design and Implementation of the FreeBSD Operating
System" by Marshall Kirk McKusick and George V. Neville-Neil

Dan Kegel's "The C10K problem",
http://www.kegel.com/c10k.html

http://www.kegel.com/c10k.html
http://www.kegel.com/c10k.html

Direct I/O - 40,000’
Data is written directly into user’s
buffer for reads, taken directly from
user’s buffer for writes

Kernel SpaceUser Space

buf D
e
v

read(fd, len)

write(fd, len)

input

outputbuf

Asynchronous I/O Timeline

User Space
Kernel Space

Time

aio_read()

Parameters
Checked

No Data

Data
Arrives Fulfilled

T1T0 T2 T3 T4

aio_return()

Parameters
Checked

T5 T6

100,000 digits
of Py in PyPy

T7

Data
Available

