Actors

What, Why; and How

Donovan Preston



What Is an Actor?



Actor Model

- http://en.wikipedia.org/wiki/

Actor model

. The Actor model 1s a mathematical

model of concurrent computation that
treats "actors' as the universal
primitives of computation.


http://en.wikipedia.org/wiki/Actor_model
http://en.wikipedia.org/wiki/Actor_model
http://en.wikipedia.org/wiki/Actor_model
http://en.wikipedia.org/wiki/Actor_model
http://en.wikipedia.org/wiki/Concurrent_computation
http://en.wikipedia.org/wiki/Concurrent_computation
http://en.wikipedia.org/wiki/Actor_model
http://en.wikipedia.org/wiki/Actor_model
http://en.wikipedia.org/wiki/Actor_model
http://en.wikipedia.org/wiki/Actor_model
http://en.wikipedia.org/wiki/Actor_model
http://en.wikipedia.org/wiki/Actor_model

Actor Constraints



An Actor Is a Process



An Actor Can
Change 1ts State



An Actor Can Create
Another Actor and
Get 1ts Address



An Actor Can Send a
Message To Any

Addresses 1t Knows



An Actor Can Wait
for a Specific

Message to Arrive in
1its Mailbox



Why Use Actors?



Isolation

- Only an Actor can change 1ts own
state, simplifying logie

- Locking not required

- Potential for race conditions reduced



Simple Control Flow

~ FKach Actor’s control flow 1s
independent

~ Code can be written straight line or
with simple loops



Message Passing

~ Kasy to distribute
~ Across cores
~ Across UNIX process boundaries

~ Across machines



Simplified Krror Handling

~ Most exceptional conditions occur
while waiting for a message

-~ Timeouts
-~ Network errors
- Isolates error handling code

-~ Makes 1t easier to build fault tolerant
systems



How Are Actors
Implemented?



Existing Actor Systems

- Erlang http://erlang.org/

-~ lo http:/www.iolanguage.com/

~ Python
- PARLEY http://osl.cs.utuc.edu/parley

- Dramatis http://pyvpi.python.org/pypi/dramatis

- Candygram http://candygram.sourceforge.net/


http://www.iolanguage.com
http://www.iolanguage.com
http://osl.cs.uiuc.edu/parley/
http://osl.cs.uiuc.edu/parley/
http://pypi.python.org/pypi/dramatis
http://pypi.python.org/pypi/dramatis

I Built My Own

...Tor science!

http://bitbucket.org/tzzzy/pyvthon-actors



http://bitbucket.org/fzzzy/python-actors
http://bitbucket.org/fzzzy/python-actors

What Did I Choose?

- Green Threads tor “Processes”
-~ Using eventlel
- Which uses greenlet
- JSON for message serialization

- Used to copy messages between 1n-
process actors

-~ WSGI/HTTP for network protocol



Green Threads?

~ Why not:
~ POSIX Threads

~ OS Processes

~ Speed
~ Memory Usage






_mmy



Spawning an Actor

from pyact import actor

class Hello(actor.Actor):
def main(self, what):
print "Hello,", what

actor| = Hello.spawn("world")
actor2 = Hello.spawn("pycon”)




Message Copying

- Messages are serialized into JSON

~ Messages to in-process actors are thus

copied
-~ Preserves isolation

~ JSON 1s ready to go over the network



Sending a Message

from pyact import actor

class Send(actor.Actor):
def main(self, address):
print "Sending message”
address.cast("hello")

class Receive(actor.Actor):
def main(self):
print "Receiving message”
pattern, message = self.receive()
print "Message:", message

receiver = Receive.spawn()
sender = Send.spawn(receiver)

EE——



Pattern Matching

- “An Actor Can Wait for a Specific

Message to Arrive in its Mailbox™
-~ In Erlang this 1s called
“Selective Receive”
- Also known as “Pattern Matching”

-~ Python doesn’t have this

- My implementation 1s called “shaped”



Possible Message Contents

~ dict
~ hist

~ slring
~ 1t

~ float

{hello": str)

[str]

(int, str; float)
{'nested": {str:str}}

{'exact’: 'match'}

—



Matching a Message

class Send(actor.Actor):
def main(self, address):
print "Sending message”
address.cast("This does not match")
address.cast({u'hello’: u'world'})

class Receive(actor.Actor):
def main(self):
print "Receiving message”
pattern, message = self.receive({u"hello": unicode})
print "Greeting Target:", message['hello']

receiver = Receive.spawn()
sender = Send.spawn(receiver)




Network Protocol

~ | chose:

~ HTTP
~ wsgl application

~ JSON

~ REST



REST Interface

~ PUT spawns an actor
~ Redirects to an Address
~ POST <Address>

~ sends a message to actor



Problem

Python modules contain global state



Module Global Problem

-~ Possibility:

- Keep a unique copy of sys.modules
for every actor

~ Seal modules i wrapper objects to
prevent modification

- Reality:

-~ Just don’t use global module state



Q&A

Tell me what I don't know
about Actors or Python



