
str.format()

Eric V. Smith
True Blade Systems, Inc.

eric@trueblade.com

1

How
"%s, %s" % ("Hello", "world")

became
"{}, {}".format("Hello", "world")

-or-

Friday, February 19, 2010

Overview: What and Why?

Simple Usage

Format Specification for Basic Types

Formatting for Your Own Types

Defining Your Own Templating Language

Tips and Tricks

2

Friday, February 19, 2010

Getting our feet wet
"My {0} is {1}".format("name",
"Eric") -> "My name is Eric"

"{1} is my {0}".format("name",
"Eric") -> "Eric is my name"

"My {attr} is {value}".format
(attr="name", value="Eric") -> "My
name is Eric"

"My {attr} is {0}".format("Eric",
attr="name") -> "My name is Eric"

3

Friday, February 19, 2010
Just focus on named and positional args.

What str.format()
brings

New string method: str.format (and in 2.x,
unicode, too).

New method on all objects (objects format
themselves!):
__format__(self, fmt).

New built-in: format(obj, fmt=None).

New class: string.Formatter.

4

Friday, February 19, 2010
str.format is similar in concept to % formatting for strings.
__format__ is similar in concept to a parameterized __str__ method.
Default object.__format__(self, fmt) just calls format(str(self), fmt).
__format__ is where the extensibility comes in.
__format__ is on all objects in the sense that __len__ is available on all objects.
The relationship between format and __format__ is like len and __len__.

str.format()
Described in PEP 3101.

A way to format strings, similar to and in
addition to %-formatting and string.Template.

Uses {} embedded in strings to expand variables.

First appeared in CPython 2.6 and 3.0. Supported
by Jython and IronPython.

Minor (but important!) improvements made in
2.7 and 3.1.

5

Friday, February 19, 2010
I’ll refer to this technology as “str.format”, but it’s really a number of related things. By the time we’re done, you’ll understand how it all relates together.

Isn’t %-formatting
good enough?

6

The primary issue is that it’s a binary operator
and difficult to enhance or extend. Unlike most
other things in Python, it’s not a “normal”
function with parameters.

It’s not usable with user-defined types. It has zero
extensibility hooks.

It has the wrong precedence. In particular it binds
more tightly than +:
"this is %s" + "a %s" % ("not",
"test")

Friday, February 19, 2010
No named parameters, args, kwargs. First argument is the string, second argument is a tuple, a dict, or an object.

The types known to %-formatting are built in and cannot be extended. If you want to format a date, a Decimal, etc., you need to provide some alternate mechanism.

My biggest problem
Problem with multiple-element tuples.
print("result: %s" % result)
What happens when result is (0, 1)?

7

Friday, February 19, 2010

8

Traceback (most recent call last):
 File "<stdin>", line 1, in ?
TypeError: not all arguments
converted during string formatting

Ouch.

Friday, February 19, 2010
This is a real problem. Iʼve seen this problem even in the standard library.
Last Tuesday this caused a production system I work on to crash (bad test coverage, admittedly).

To protect yourself against unknown
parameters, you must always say:
print("result: %s" % (result,))

How many of us always do that?

9

Solution

Friday, February 19, 2010

You can use either named arguments or
positional arguments, but not a mixture.

You must use named arguments for l10n
because that’s the only way to swap the order
of parameters.

Syntax for named arguments is clunky:
"result: %(value)10.10s" % mydict

Can’t mix named arguments with ‘*’.

10

More problems with
%-formatting

Friday, February 19, 2010
More problems with %-formatting.
I always forget the trailing ʻsʼ. This syntax confuses many people, who rarely see it.

What about
string.Template?

Described in PEP 292.

Uses $ (with optional braces) for expansion
variables.

Not really in the same problem space.

11

Friday, February 19, 2010

"pi={0:.5}".format(math.pi) ->
'pi=3.1416'

"pi={0:.5} or {0:.2}".format
(math.pi) -> 'pi=3.1416 or 3.1'

"pi={0.pi} e={0.e}".format(math) ->
'pi=3.14159265359 e=2.71828182846'

12

More examples

Friday, February 19, 2010
1: After a colon, type-specific formatters can be supplied.
2: With %-formatting you can use the same value multiple times, but only if you used named arguments.
3: ‘.’ is just attribute access. No method calls, nothing fancy. But since evaluating an attribute can run arbitrary code, there’s no real protection here.

__getitem__ access
"{0[0]}.{0[1]}".format
(sys.version_info) -> '3.1'

"The {0[thing]}'s due in {0[when]}
days".format({'when':3, 'thing':
'homework'}) -> 'The homework's due
in 3 days'

"{0[0]}.{0.minor}".format
(sys.version_info) -> '2.7'

13

Friday, February 19, 2010
1: [] used for getitem access (list indexes or dictionary lookups)
2: Here used for dictionary lookups. Notice the keys provided are strings. The rule is: if it “looks like” an integer, convert it to an integer, otherwise use it as a string.
3: Only works in 2.7 or 3.2 (namedtuple for sys.version)

"pi={0.pi:.{n}}".format(math, n=7)
-> 'pi=3.141593'

"i={0:d} {0:X} {0:#b}".format(300)
-> 'i=300 12C 0b100101100'

"{0:*^20}".format("Python") ->
'*******Python*******'

14

Yet more examples

Friday, February 19, 2010
1: Shows recursive expansion. Only goes one level deep.
2: Shows format specifiers; also shows using the same attribute multiple times.
3. More format specifiers: centered with ‘*’ for a padding char.

"{0:%Y-%m-%d}".format(datetime.now
()) -> '2010-02-17'

"My {0} is {2}".format("last
name", "Eric", "Smith") -> 'My last
name is Smith'

15

Still more examples

Friday, February 19, 2010
1: Shows that types can specify their own specification language. Here, it’s strftime.
2: Not all values must be used. We talked about adding support for making this an optional error, but couldn’t come up with a good syntax.

I promise, the last
example

It’s easy to create a formatting function.

f = "{0} is {1:.12f}".format
f('pi', math.pi) ->
'pi is 3.141592653590'

16

Friday, February 19, 2010
Since it’s just a regular function with regular parameters, you can do the regular stuff you’d expect in Python.

They start with “!” and must come before the
format specifier (if any).

Valid conversions are:

!s : convert to string using str().

!r : convert to string using repr().

!a : convert to ascii using ascii() 3.x only.

17

Type conversions

Friday, February 19, 2010

"{0!r}".format(now) ->
'datetime.date(2010, 2, 17)'

"{0!s}".format(now) ->
'2010-02-17'

"{0:%Y} {0!s} {0!r}".format(now) ->
'2010 2010-02-17 datetime.date
(2010, 2, 17)'

"{0!s:#>20}".format(now) ->
'##########2010-02-17'

18

Type conversions

Friday, February 19, 2010
Assume that now is a datetime.date(2010, 2, 17)
3: Shows advantage over calling repr(): you can decide in the string, not in the code.
4: Shows that once !r, !s, or !a is used, the result is a string, so the format specifier must use the string format specification language.

Improvements in 2.7
and 3.1

Comma formatting for numeric types:
format(1234567, ',') -> '1,234,567'

If you want numbered, in order replacement
values, you can omit the numbers. This is a
huge usability improvement!
'I have {:#x} {}'.format(16,
'dogs') -> 'I have 0x10 dogs'

complex is better supported.

19

Friday, February 19, 2010
Comma formatting works for float, int (long), complex, Decimal.
Comma formatting is not locale aware. It’s hard coded for commas and 3 digit grouping (like it’s hard coded for dots, not locale-aware decimals).

format() built-in and obj.__format__()
are the building blocks.

str.format() parses strings, separates out
the {} parts, does any lookups or conversions,
and calls format() with the calculated object
and the supplied format string. It then knits
the result back together into its return
parameter. This is similar to %-formatting.

20

str.format() vs. format
vs. obj.__format__()

Friday, February 19, 2010
1: Objects format themselves! It’s fundamental to the concept.
2: Note that it’s str.format() that has the curly braces, and the objects themselves that interpret the format specifications. This is key to the whole thing.

object.__format__
The default implementation is (basically):
def __format__(self, fmt):
 return format(str(self), fmt)

DO NOT RELY ON THIS BEHAVIOR!

2.6: format(1+1j,'*^8s') -> '*(1+1j)*'

2.7: format(1+1j,'*^8s') ->
ValueError: Unknown format code
's' for object of type 'complex'

21

Friday, February 19, 2010
If you take only one thing from this talk, this should be it.
By relying on this behavior for built-in types (or types you didn’t write), you expose yourself to future breakage when/if those types implement their own format
specifications. If you rely on it for your own types, you’re forced to either break things or implement str’s formatting specifications as a subset of your own spec.

What to do?
If you really want this behavior, convert to a
string first.

format(str(1+1j), '*^8s') returns the
same thing in 2.6, 2.7, 3.1, 3.2.

This is equivalent to:
 '{0!s:*^8}'.format(1+1j)

22

Friday, February 19, 2010

object

str (and unicode in 2.x)

int (and long in 2.x)

float

complex

decimal.Decimal

datetime.date, .datetime, .time
23

Types implementing
__format__

Friday, February 19, 2010
object calls format(str(self), fmt)

datetime types use strftime. Others are documented on next slides.

str & unicode
Very similar to %-formatting.

[[fill]align][minimumwidth]
[.precision][type]

Addition of ‘^’ for center alignment.

24

Friday, February 19, 2010

Numeric types
Again, similar to %-formatting.

[[fill]align][sign][#][0]
[minimumwidth][.precision][type]

New features: ‘^’, ‘%’, ‘b’, ‘n’, ‘’ (empty)

25

Friday, February 19, 2010
^ centered
% as a percentage
b binary
n locale aware formatting
empty like %g, but always with a digit past the decimal

Formatting your own
types

Just implement __format__(self, spec).

Parse the spec however you want. It’s your own
type-specific language.

Or, do what Decimal does and treat spec like the
built-in float specification language.

You’ll automatically be useable via the
mechanisms I’ve shown: str.format() and
format().

26

Friday, February 19, 2010

str.format()
weaknesses

Slower than %-formatting.

Some people dislike the syntax.

In 2.6 and 3.0, you must always explicitly
identify all replacement variables (by name or
number).

27

Friday, February 19, 2010
Some people disike the syntax: There’s more software yet to be written in Python than has already been written.

str.format()
strengths

Types that can be formatted are not limited to a
few built-in ones.

Types can format themselves.

The formatting language can by type-specific.

In 2.7 and 3.2, numbers can easily have
commas.

28

Friday, February 19, 2010
This is all in addition to the reasons in the PEP 3101 rationale that I mentioned earlier.
1: The few built-in types for %-formatting are the important ones, though!
We don’t need a one-size fits all language, like %-formatting. For example, datetime.
With %-formatting it’s hard to expose date formatting as part of l10n.

Your own template
language

string.Formatter: little known, but
powerful.

It’s reasonably fast. The important parts are
implemented in C (for CPython).

So, say we want to use vertical bars “|” instead
of curly braces. Let’s write a custom class.

29

Friday, February 19, 2010
But first, let’s see how string.Template actually works before we customize it

How string.Template
works out of the box
>>> fmtr = string.Formatter()
>>> fmtr.format('-{0:^10}-', 'abc')
'- abc -'

>>> fmt = string.Formatter().format
>>> fmt('-{0:^10}-', 'abc')
'- abc -'

30

Friday, February 19, 2010

Custom template
class

class BarFormatter(string.Formatter):
 def parse(self, template):
 for s, fld in grouper(2,
 template.split('|')):
 if fld:
 name, _, spec = \
 fld.partition(':')
 yield s, name, spec, None
 else:
 yield s, None, None, None

31

Friday, February 19, 2010
This example isn’t meant to be particularly useful but to demonstrate how much can be down with a little code.
grouper() comes from the itertools recipes.
The Python documentation (section 8.1). The tuples are (literal_text, field_name, format_spec, conversion)
You can also override attribute lookup, whether all parameters are consumed, how the conversion specifiers work, etc.
It’s very powerful. You can see how it’s implemented in string.py in the stdlib.

Using our custom
template language

>>> fmt = BarFormatter().format
>>> fmt('-|0:^10s|-', 'abc')
'- abc -'

>>> f = lambda k, v: \
 fmt('|0:s| is |1:.13f|', k, v)
>>> f('e', math.e)
'e is 2.7182818284590'

32

Friday, February 19, 2010
Look ma, no curly braces! With just 8 lines of code.
This is not a useful example, of course. But it does show what you can do with a little code.

Tips and Tricks

33

Migrating a library from %-formatting to
str.format().

Delaying instantiation of parameters.

Friday, February 19, 2010

Migrating from %-
formatting to
str.format()

Problem: You have a library that exposes a %-
formatting interface, you want to migrate to a
more expressive str.format() interface.

Solution: You support both for a few releases,
then eventually only support str.format().

34

Friday, February 19, 2010
There was some work going on to convert %-format strings to str.format strings.
This won’t help you when writing a library where you want to change APIs. It will help you move code that contains %-formatting so that it uses str.format, but that’s not
our problem here.
That conversion is difficult to do correctly for 100% of the cases.

Existing Library
class Logger:
 def __init__(self):
 self.fmt = '%(msg)s'
 def log(self, msg):
 args = {'now': datetime.now(),
 'msg': msg}
 s = self.fmt % args
 print(s)

35

Friday, February 19, 2010

Interim Solution
class Logger:
 def __init__(self):
 self.fmt = '{msg!s}'
 def log(self, msg):
 args = {'now': datetime.now(),
 'msg': msg}
 s = expand_str_mapping(
 self.fmt, args)
 # s = self.fmt.format(args)
 print(s)

36

Friday, February 19, 2010
Really the same, except for expand_str_mapping instead of %-formatting with a mapping.
The trick, of course, is writing expand_str_mapping.
It’s somewhat easier because, as a library writer, you’ll know what type of object you’ll be passing in. Almost always a mapping, but you could write expand_str_positional
instead.
The final version of this will just use s = self.fmt.format(**args)

expand_str_mapping
Some amount of guessing involved based on
the format string, but really only for
pathological cases.

If the format string has a ‘%(’ but not a ‘{‘, use
%-formatting.

If it has a ‘{‘ but no ‘%(’, use str.format().

And if has neither, no expansion needed (or, it
doesn’t matter which you use).

37

Friday, February 19, 2010
This is an active project of mine.

The hard part
What if a format string has both ‘{‘ and ‘%(’?

We’ll need to parse the string, but even that isn’t
enough for a format string like:
"{abc:%(abc)s}"
But I think it can be made good enough.

This is an ongoing project of mine. I want to
convert argparse before it makes it into the
standard library. Send me mail if you’re
interested or have ideas.

38

Friday, February 19, 2010

Delayed Instantiation
Problem: Some objects or calculations are
expensive, and you don’t want to compute
them unless they’re used.

But, if you don’t control the format string, you
might not know if they’ve being used.

Solution: Don’t instantiate them until they’re
actually needed.

39

Friday, February 19, 2010
My last trick

Delayed Proxy
class Delayed:
 __sntnl = object()
 def __init__(self, fn):
 self.__fn = fn
 self.__obj = self.__sntnl
 def __getattr__(self, attr):
 if self.__obj is self.__sntnl:
 self.__obj = self.__fn()
 return getattr(self.__obj,
 attr)

40

Friday, February 19, 2010

Using Delayed
Instantiation

class Logger:
 def __init__(self):
 self.fmt = '{msg!s}'

 def log(self, msg):
 print(self.fmt.format(
 now=Delayed(datetime.now),
 moon=Delayed(moon_phase),
 msg=msg))

41

Friday, February 19, 2010

Phase of the moon
Basic algorithm from:
http://www.daniweb.com/code/
post968407.html

def moon_phase(date=None):

Returns a collections.namedtuple of:
(status, light).

42

Friday, February 19, 2010
if date is None, use the current date
status is a string describing the phase of the moon

http://www.daniweb.com/code/post968407.html
http://www.daniweb.com/code/post968407.html
http://www.daniweb.com/code/post968407.html
http://www.daniweb.com/code/post968407.html

>>> logger = Logger()
>>> logger.log('text')
text

>>> logger.fmt = 'phase {moon[0]!r}:
{msg!s}'
>>> logger.log('text')
phase 'waxing crescent (increasing
to full)': text

43

Friday, February 19, 2010

>>> logger.fmt = 'phase {moon[0]!r}
({moon.light:.1%}): {msg!s}'
>>> logger.log('text')
phase 'waxing crescent (increasing
to full)' (34.0%): text

>>> logger.fmt = '{now:%Y-%m-%d}:
{msg!r:.10}'
>>> logger.log(sys)
2010-02-19: <module 's

>>> logger.log(3)
2010-02-19: 3

44

Friday, February 19, 2010
Phase of the moon is delay calculated, can call __getitem__ or use attribute access on it to trigger the instantiation
Same for putting the current time into the result

45

Questions?
eric@trueblade.com

http://trueblade.com/pycon2010

Friday, February 19, 2010

