
Dealing with unsightly data in the real world

Alexander Dutton
Lead Developer, Mobile Oxford

Oxford University Computing Services
PyCon Atlanta 2010

Sunday, 21 February 2010

What’s this all about?

•You need/want someone else’s data

•The data isn’t in a format you’d like

•The data provider is unable to give you ‘better’ data

•You’ve got to make do with what you’ve got

Sunday, 21 February 2010

A few examples
Screenscraping

• lxml.html

•ElementSoup

Mapping between mark-ups

•xml.handler.ContentHandler

•generators/coroutines

•regular expressions

Mapping between protocols

•3rd party libraries

Sunday, 21 February 2010

Checklist
•Get permission (if necessary)

•Reverse engineer the data source

•Write code to pull the data

•Put an API on it

•Test!

•Deploy

Sunday, 21 February 2010

Permission

•Read the terms of use

•The provider may not be happy

•If unsure, contact them

•Be gentle

•If told to stop, you’d better stop!

Sunday, 21 February 2010

Reverse engineering
Things to consider :

•Have you covered all the corner cases?

•How stable is the source data?

•Will the provider warn you of changes?

Tools:

•Documentation

•Python shell

•Firebug or equivalent

•Wireshark

Sunday, 21 February 2010

Model

Data
Source Connector API Consumer

Sunday, 21 February 2010

Interacting with the data source

Make it as resilient as possible

•Coerce individual data to a defined type/range

•Error checking

•Log exceptions, but handle them gracefully

•“Be strict in what you give and forgiving in what you receive”

Sunday, 21 February 2010

Defining an API

•Be generic
•Be specific
•Document the API
•Write more tests

Sunday, 21 February 2010

Testing

This has been a running theme.
You’ll do well to have unit tests for each part of your module.
When it breaks (and it will), you’ll want to know.

Sunday, 21 February 2010

BBC Weather

Sunday, 21 February 2010

BBC Weather
logger = logging.getLogger("app.weather")
FORECAST_URL = "http://newsrss.bbc.co.uk/weather/forecast/%d/Next3DaysRSS.xml"

def get_forecasts():
 FORECAST_RE = re.compile(
 r'Max Temp: (?P<max_temperature>-?\d+|N\/A).+Min Temp: (?P<min_temperature>-?\d+|N\/A)'
 + r'.+Wind Direction: (?P<wind_direction>[NESW]{0,3}|N\/A), Wind Speed: '
 + r'(?P<wind_speed>\d+|N\/A).+Visibility: (?P<visibility>[A-Za-z\/]+), '
 + r'Pressure: (?P<pressure>\d+|N\/A).+Humidity: (?P<humidity>\d+|N\/A).+'
 + r'UV risk: (?P<uv_risk>[A-Za-z]+|N\/A), Pollution: (?P<pollution>[A-Za-z]+|N\/A), '
 + r'Sunrise: (?P<sunrise>\d\d:\d\d)[A-Z]{3}, Sunset: (?P<sunset>\d\d:\d\d)[A-Z]{3}'
)

 try:
 xml = ET.parse(urllib2.urlopen(FORECAST_URL % bbc_id))
 except Exception:
 logger.exception("Could not parse feed")
 return {}

 forecasts = {}
 for elem in xml.findall('.//item/description'):
 data = FORECAST_RE.match(elem.text)
 if data is None:
 logger.error("Weather not matched by RE")
 return {}
 data = data.groupdict()
 forecasts[data['observed_date']] = data

 return forecasts

Sunday, 21 February 2010

http://newsrss.bbc.co.uk/weather/forecast/%25d/Next3DaysRSS.xml
http://newsrss.bbc.co.uk/weather/forecast/%25d/Next3DaysRSS.xml

Libraries
Library information systems are queried using Z39.50, a stateful
binary protocol.
class OLISSearch(object):
 def __init__(self, query):
 self.connection = zoom.Connection(
 getattr(settings, 'Z3950_HOST'),
 getattr(settings, 'Z3950_PORT', 210),
)
 self.connection.databaseName = getattr(settings, 'Z3950_DATABASE')
 self.connection.preferredRecordSyntax = getattr(settings, 'Z3950_SYNTAX', 'USMARC')

 self.query = zoom.Query('CCL', query)
 self.results = self.connection.search(self.query)

 def __iter__(self):
 for r in self.results:
 yield OLISResult(r)

 def __getitem__(self, key):
 if isinstance(key, slice):
 if key.step:
 raise NotImplementedError("Stepping not supported")
 return map(OLISResult, self.results.__getslice__(key.start, key.stop))
 return OLISResult(self.results[key])

 def __len__(self):
 return len(self.results)

Sunday, 21 February 2010

Libraries

That was easy; right?

Sunday, 21 February 2010

Libraries

Exposing this over HTTP is a problem.

Each HTTP request requires a new Z39.50 connection.

Three ways to solve:
•Pull all the results for a query and cache them
•Create a bijection between the HTTP and Z39.50 sessions
•Create a connection manager which abstracts the state away

Sunday, 21 February 2010

sigh

Sunday, 21 February 2010

Libraries
There’s too much code for one slide

•We’ve got a connection manager in a separate process

•Exposes API using the multiprocessing module
•Query passed from Django to the CM with the sessionkey

•Finds connections[sessionkey]
•Checks query against previous query

•Requeries if necessary

•Returns an object implementing the list protocol
•‘Old’ connections get timed out and closed

Sunday, 21 February 2010

Bus locations

Sunday, 21 February 2010

Java. Oh Dear.

How does it work?
No source to inspect.

Sunday, 21 February 2010

Hello, Wireshark

We sniffed its HTTP requests to work out what it was up to.

This led us to a URL to play with and some example requests.

NEW|1024|4|X5|Operators/common/bus/1|45,302

Sunday, 21 February 2010

Documentation

Before we ‘wrote’ any code we blogged about how it works.

http://blogs.oucs.ox.ac.uk/inapickle/2010/01/14/live-bus-
locations-from-acis-oxontime/

Sunday, 21 February 2010

http://blogs.oucs.ox.ac.uk/inapickle/2010/01/14/live-bus-locations-from-acis-oxontime/
http://blogs.oucs.ox.ac.uk/inapickle/2010/01/14/live-bus-locations-from-acis-oxontime/
http://blogs.oucs.ox.ac.uk/inapickle/2010/01/14/live-bus-locations-from-acis-oxontime/
http://blogs.oucs.ox.ac.uk/inapickle/2010/01/14/live-bus-locations-from-acis-oxontime/

Implementation

Sunday, 21 February 2010

That’s it
Questions?

Sunday, 21 February 2010

