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What’s this all about?

•You need/want someone else’s data

•The data isn’t in a format you’d like

•The data provider is unable to give you ‘better’ data

•You’ve got to make do with what you’ve got
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A few examples
Screenscraping 

• lxml.html

•ElementSoup

Mapping between mark-ups

•xml.handler.ContentHandler

•generators/coroutines

•regular expressions

Mapping between protocols

•3rd party libraries
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Checklist
•Get permission (if necessary)

•Reverse engineer the data source

•Write code to pull the data

•Put an API on it

•Test! 

•Deploy
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Permission

•Read the terms of use

•The provider may not be happy

•If unsure, contact them

•Be gentle

•If told to stop, you’d better stop!
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Reverse engineering
Things to consider :

•Have you covered all the corner cases?

•How stable is the source data?

•Will the provider warn you of changes?

Tools:

•Documentation

•Python shell

•Firebug or equivalent

•Wireshark
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Model

Data 
Source Connector API Consumer
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Interacting with the data source

Make it as resilient as possible

•Coerce individual data to a defined type/range

•Error checking

•Log exceptions, but handle them gracefully

•“Be strict in what you give and forgiving in what you receive”
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Defining an API

•Be generic
•Be specific
•Document the API
•Write more tests
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Testing

This has been a running theme.
You’ll do well to have unit tests for each part of your module.
When it breaks (and it will), you’ll want to know.
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BBC Weather
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BBC Weather
logger = logging.getLogger("app.weather")
FORECAST_URL = "http://newsrss.bbc.co.uk/weather/forecast/%d/Next3DaysRSS.xml"

def get_forecasts():
    FORECAST_RE = re.compile(
        r'Max Temp: (?P<max_temperature>-?\d+|N\/A).+Min Temp: (?P<min_temperature>-?\d+|N\/A)'
      + r'.+Wind Direction: (?P<wind_direction>[NESW]{0,3}|N\/A), Wind Speed: '
      + r'(?P<wind_speed>\d+|N\/A).+Visibility: (?P<visibility>[A-Za-z\/ ]+), '
      + r'Pressure: (?P<pressure>\d+|N\/A).+Humidity: (?P<humidity>\d+|N\/A).+'
      + r'UV risk: (?P<uv_risk>[A-Za-z]+|N\/A), Pollution: (?P<pollution>[A-Za-z]+|N\/A), '
      + r'Sunrise: (?P<sunrise>\d\d:\d\d)[A-Z]{3}, Sunset: (?P<sunset>\d\d:\d\d)[A-Z]{3}'
    )
     
    try:
        xml = ET.parse(urllib2.urlopen(FORECAST_URL % bbc_id))
    except Exception:
        logger.exception("Could not parse feed")
        return {}

    forecasts = {}
    for elem in xml.findall('.//item/description'):
        data = FORECAST_RE.match(elem.text)
        if data is None:
            logger.error("Weather not matched by RE")
            return {}
        data = data.groupdict()
        forecasts[data['observed_date']] = data

    return forecasts
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Libraries
Library information systems are queried using Z39.50, a stateful 
binary protocol.
class OLISSearch(object):
    def __init__(self, query):
        self.connection = zoom.Connection(
            getattr(settings, 'Z3950_HOST'),
            getattr(settings, 'Z3950_PORT', 210),
        )
        self.connection.databaseName = getattr(settings, 'Z3950_DATABASE')
        self.connection.preferredRecordSyntax = getattr(settings, 'Z3950_SYNTAX', 'USMARC')

        self.query = zoom.Query('CCL', query)
        self.results = self.connection.search(self.query)

    def __iter__(self):
        for r in self.results:
            yield OLISResult(r)

    def __getitem__(self, key):
        if isinstance(key, slice):
            if key.step:
                raise NotImplementedError("Stepping not supported")
            return map(OLISResult, self.results.__getslice__(key.start, key.stop))
        return OLISResult(self.results[key])

    def __len__(self):
        return len(self.results)
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Libraries

That was easy; right?
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Libraries

Exposing this over HTTP is a problem.

Each HTTP request requires a new Z39.50 connection.

Three ways to solve:
•Pull all the results for a query and cache them
•Create a bijection between the HTTP and Z39.50 sessions
•Create a connection manager which abstracts the state away
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*sigh*
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Libraries
There’s too much code for one slide

•We’ve got a connection manager in a separate process

•Exposes API using the multiprocessing module
•Query passed from Django to the CM with the sessionkey

•Finds connections[sessionkey]
•Checks query against previous query

•Requeries if necessary

•Returns an object implementing the list protocol
•‘Old’ connections get timed out and closed
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Bus locations
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Java. Oh Dear.

How does it work?
No source to inspect.
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Hello, Wireshark

We sniffed its HTTP requests to work out what it was up to.

This led us to a URL to play with and some example requests.

NEW|1024|4|X5|Operators/common/bus/1|45,302
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Documentation

Before we ‘wrote’ any code we blogged about how it works.

http://blogs.oucs.ox.ac.uk/inapickle/2010/01/14/live-bus-
locations-from-acis-oxontime/
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Implementation
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That’s it
Questions?
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