

Why not run all your tests, all the

time, on all your platforms?

C. Titus Brown
titus@idyll.org

Outline

1.  What & why – thinking about continuous
integration

2.  Just Use Hudson (with examples)

3.  What about Buildbot?

4.  Is there a better way? Architectural constraints.

5.  What if …

6.  Concluding thoughts & calls to action

What is continuous integration?

Build and test your project regularly and
automatically.

  Makes sure your tests are run – even the slow
ones on platforms your developers don’t like.

  Detects cross-environment problems, versioning
mismatches, etc. etc. as soon as possible.

  Mark Shuttleworth is also a fan, and he’s been in
space!

Digression: you know you need a
build system and tests, right?

You must have:

  Version control

  Automated build/compile(/integrate/deploy) system

  Automated tests

…or else continuous integration doesn’t make sense.

(And you’re doomed.)

So, CI: It’s not rocket science…

Ingredients:

1.  shell script/batch file

2.  cron job / scheduled task

3.  Some notification system

⇒  Continuous integration!

…but it’s not trivial either
  Configuration of build/tests

  Build/test location and cleanup
  Version control, caching and reset
  Error reporting

  Management of configuration
  Who decides what to build?
  Cross-platform build? (Windows vs the world)

  Management of results and reporting
  Centralized reporting
  Data & stats mining of the reports over time

  Notification
  E-mail, RSS, Twitter, cell phone, …
  Test subsets (“Windows-only failures, of foo”)

Software options

  Buildbot

  Hudson

  CruiseControl

  Bamboo

  Bitten

  Apycot

  Continuum

  Quickbuild

  …

Just Use Hudson

  hudson-ci.org

  Good for one project/one machine, on up.

  Supports multiple projects, multiple builders,
multiple slaves, remote “push” of build info, e-
mail notification, every VCS, Web configuration,
XML-RPC interface, …

  …and it’s the Python testing world’s dirty little
secret, because it’s written in Java.

Hudson example

  Basic config

  Add output XML

  Add a slave

Hudson verdict

  Very friendly to install, configure, and use.

  Great for small-ish projects (like most of mine,
and yours).

  Very saleable to non-geeks.

  Dirty secret of Python world: “Yeah, we used
buildbot until recently. Then I switched us to
Hudson and my life got a lot better.”

What about Buildbot?

  What everyone thinks they should use until they
actually try to use it. (…analogous to zope in 1999.)

  Very powerful, very configurable.

  Uses an (explicit) master/slave model designed
around persistent connections.

  Requires a relatively high level of expertise for both
configuration and maintenance.

  Reliability on Windows used to suck, but it may have
improved recently with Twisted/Windows fixes.

Buildbot architecture

Buildbot verdict
  Frustratingly annoying to configure and maintain. (Although I

still don’t quite understand why.)

  Debugging buildbot setups makes me want to shoot myself –
it’s almost as bad as debugging e-mail or print queues.

  “Just use zc.buildout and collective.buildout” – now you
have two problems.

  Twisted is a lifestyle choice that I have not personally made.

  Unless you have a specific reason to go with buildbot, try
Hudson first.

  If you need it, you need it: excellent synchronization/
coordination, scalability, configurability.

Architectural constraints

Architecture doesn’t prevent you from making
arbitrary design decisions, but it does make

some decisions more natural than others.

Most continuous integration systems are built
around a master/slave model: “one

configuration, to rule them all.”

What does this prevent? And what would a more
decentralized, less tightly coupled model

enable?

Introducing pony-build
So I designed and wrote my own
CI system.

I don’t know why it’s called
pony-build.

But everybody really does want
a pony when it comes to
continuous integration. So
maybe that’s why?

pony-build is my test-bed for CI
ideas and implementation.

(Similar in concept to cmake/
ctest/DART stack.)

(Image from headinjurytheater.com/Iocaine Powder game)

pony-build architecture

pony-build architecture

completely
independent

pony-build niftiness?

  File and metadata upload.

  Built-in support for virtualenv and (soon) EC2.

  PubSubHubbub (PuSH) for active notation via
webhooks.

  Ridiculously trivial to set up on any platform - Python +
single-file.

  Very simple to write new, custom build scripts – they
are scripts.

  Very debuggable – they are scripts.

…but pony-build sucks, too:

  Centralized coordination and synchronization is
not natural to the pony-build model.
  Prevents real-time monitoring/control of builds.
  Build timeouts are tricky as well.

  Decoupling things complicates the mental
model for inexperienced “users”.

  Some good authentication model needs to be
developed (“official” results?)

  Basic functionality exists & works, but not ready
for general use.

Let a thousand ponies whinny!

  Eric Holscher (and Jacob Kablan-Moss):
“Hey, this pony-build thing is really trivial…. Screw

Titus’s crappy implementation, we’re going to write
something using Django instead, ‘cause that’s how
we roll.” (paraphrased)

=> pony_barn/devmason.org

  Awesome! (No, really – changing the world
means convincing others to do your dirty work.)

  Interoperability might be a problem down the
road. This is going to be my challenge, if
anything.

What if…

(The results of titus drinking too much.)

E.T. phone home!

Wouldn’t it be great if you shipped (some of) your tests
with your package…

And people could run them…

And send the results to you automatically?

=> Diagnose version problems, requirements,

and platform issues; debug installs.

(Inspired by cmake/ctest/DART)

(Hat tip to @illume. Shout-out to pandokia and testr.)

Meta-language for build/test

90% of Python software has some semi-custom build or test
step.

(Usually it’s ‘test’)

This is especially annoying for UNIX vs Windows, where program
call functionality is different.

What about a simple cross-CI DSL for building?

Be careful: debuggability is paramount. How far do you go?

Build all of PyPI, all the time, on
everything.

“Does this software work under Python 2.5, on Windows 7?”

“Can I download a binary package?”

And can I have all this done automatically?

From releases and dev branches?

And posted publicly?

YEEEEEEEAH!

(This is what convinced me to look beyond buildbot.)

See devmason.com, testrun.org, snakebite.org.

What about a leaderboard?

Have a standing competition with a public
leaderboard, listing who has built & tested the

most PyPI packages.

Post test stats/scores (cheesecake, coverage, …?)
too.

What about cheaters? Reward people for finding
‘em.

(Hat tip to @jacobian and @gvwilson)

Automatic build/test on cloud

Life’s too short to maintain build & test servers.

Why not pay Amazon, or Rackspace, or … to do it
for you, at 10c a CPU-hour?

This should be a single configuration option in your
CI system.

(Hint: Hudson has a plugin for Amazon EC2.)

Calls to action
  Stop creating, recommending, and using crappy software:

  a.k.a. hard to install; hard to configure; built on unstable
foundation; but otherwise functioning.

  Look at your software through the eyes of an infant (i.e. me)

  Stop doing clever things in setup.py.
  “Python’s a great configuration language, until you

suddenly realize, hey, I can program in it, too!” –GvR,
paraphrased)

  How about “python –m package.test”??

  Or “python setup.py test” (in Distribute)?

  Let’s standardize our build & test processes as much as
possible, and then a bit more.

Acknowledgements

  Eric Henry, prototype; Owen Pierce; Trent Nelson

  UCOSP undergrad capstone, spring 2010:
  Jack Carlson
  Fatima Cherkaoui
  Max Laite
  Khushboo Shakya

  Jacob Kablan-Moss and Eric Holscher

  Brett Cannon and Jesse Noller (for general
incitement)

