
Using Django in Non-Standard Ways

Eric Florenzano

PyCon, Atlanta, GA,
February 19, 2010

Why give this talk?

Why give this talk?

“I tried to bring Django into my workplace,
but we would have had to customize things
so much that it wouldn’t be worth it.”

Why give this talk?

“I got fed up with the restrictive template
langauge. It’s too bad since I liked all the
other stuff, but now I’m back in PHP.”

Non-Standard Django

Two Main Categories

Choosing alternatives to what Django
offers

Using bits of Django in other contexts

The main thing

It’s not as hard as you think it’s going to be

Choosing Alternatives
to what Django offers

1. Using Jinja2 With Django

Using Jinja2

What is it?

An alternative templating system

It makes different tradeoffs from
Django’s template system

Sometimes Jinja2 makes more sense

Using Jinja2

We created an app called django_ext

It mirrors Django’s layout exactly

But we swap out Django’s template
rendering ideas for Jinja2’s equivalent

Using Jinja2 (Cont’d)

from django.shortcuts import render_to_response

from django_ext.shortcuts import render_to_response

Using Jinja2 (Cont’d)
IMPORTS
from django.conf import settings
from django.http import HttpResponse
from django.template.context import get_standard_processors
from jinja2 import FileSystemLoader, Environment

ONE INSTANTIATION
env = Environment(
 loader=FileSystemLoader(settings.TEMPLATE_DIRS)
)

ONE 5-LINE FUNCTION
def render_to_response(tmpl, dct, req=None,
 mimetype=settings.DEFAULT_CONTENT_TYPE):
 for processor in get_standard_processors():
 dct.update(processor(request))
 rendered = env.get_template(tmpl).render(**dct)
 return HttpResponse(rendered, mimetype=mimetype)

Using Jinja2 (Cont’d):
Imports

from django.conf import settings

from django.http import HttpResponse

from django.template.context import \

 get_standard_processors

from jinja2 import FileSystemLoader

from jinja2 import Environment

Using Jinja2 (Cont’d):
Instantiation

ld = FileSystemLoader(settings.TEMPLATE_DIRS)

env = Environment(loader=ld)

Using Jinja2 (Cont’d):
One 5-Line Function

def render_to_response(tmpl, d, req=None,

 m=settings.DEFAULT_CONTENT_TYPE):

 for processor in get_std_processors():

 dct.update(processor(request))

 rendered = env.get_tmpl(tmpl).render(**d)

 return HttpResponse(rendered, mimetype=m)

That’s pretty much it!

Note: in Django 1.2,
you can just write a

template loader.

What about my apps?
Truth is, some of them will work with
Jinja2, and some of them won’t

If they won’t, you don’t need to throw
them away...

They’re free code that you can use to go
95% of the way

Just modify it to use Jinja2

2. Not using django.contrib.auth

Choosing Alternatives
to what Django offers

Why not use auth?

When using it will be more difficult than
not using it

When using it will make your code less
straightforward than not using it

e.g. Writing a Facebook App

Facebook App Basics

You don’t render HTML to the user

You render FBML, which Facebook
assembles and renders for the user
User → Facebook → Django → Facebook → User

No such thing as user registration

You’re given a unique id for each user

How to tackle this?
Didn’t even attempt to make it fit the
django.contrib.auth paradigm

We just plain don’t use the User model

Created a tiny app with one model whose
PK is the Facebook User ID

Wrote one decorator function to redirect to
an authorization page if not auth’d

Time Taken

About 45 minutes to create our custom app

About 1 hour to convert the few apps that
we needed to using our new model

Note we didn’t discard the apps

Advantages
Straightforward code with clear intent

Didn’t waste time trying to shoehorn
Facebook User IDs into the username field
of the User model

Reduced overhead (no need for any of the
auth or sessions machinery)

Still get to use the rest of the Django stack

Disadvantages

Had to write some of our own stuff

Had to modify apps

3. Not Using the ORM

Choosing Alternatives
to what Django offers

Why not use the ORM?

Integrating with complex legacy databases
Using a database that the ORM doesn’t
support

e.g. Talking to a non-relational database
You’re not talking to a “database”

Wait a minute...

You won’t have time

It might not make sense

e.g. writing a backend for Cassandra

Database backends
are pluggable!

Real-world example

Service for accessing/modifying data

Based on Pylons

Speaks HTTP + JSON

Talks to a PostgreSQL database

Written before Django was introduced to
this workplace

Web Service Example
curl -d ‘{“s”: “bloons”} -H ‘content-type:
application-json’ http://server-name/
metaflip/games/get_game_by_slug

{“tag”: “eb5d4e50c49bc832”, “name”:
“Bloons”, “approved”: true, “width”:
640, ...}

Have existing clients written to use this

http://example.com/metaflip/games/get_game_by_slug
http://example.com/metaflip/games/get_game_by_slug
http://example.com/metaflip/games/get_game_by_slug
http://example.com/metaflip/games/get_game_by_slug

Now we want to create
a Django app that

wants to use this data

We’ve got a choice...

Don’t use Django
Use Django

Create models for these objects, and
maintain them when we change the
database, etc.

 OR
Just use what we’ve already got

How that app looks:

games/
 __init__.py
 urls.py
 views.py
 models.py # Intentionally Empty
 tests.py
 context_processors.py
 templatetags/
 __init__.py
 games_tags.py

Here’s a view:
from my_lib import games_client as g

def play(request, game_slug=None):
 game = g.get_game_by_slug(game_slug)
 if not game:
 raise Http404
 return render_to_response(
 ‘games/play.html’,
 {‘game’: game},
)

What about the admin?

We already had one, written in Pylons

If not we would have had to write one

Annoying: yes, show-stopping: no

Other similar services

High score leaderboards

Achievements

Game plays

Using bits of Django in
Other Contexts

1. Using Django’s Forms in Pylons

Using Forms in Pylons

Initial implementation: No form library
Parsed the POST and validated in-line

Looked at other alternatives
FormEncode
FormBuild
WTForm (actually tried using this)

Decided we liked
Django’s Best

How do we make this work?

Turn off Django’s I18N handling

New Form base class to coerce WebOb
(Unicode)MultiDicts into a QueryDict

A Genshi wrapper to allow the form’s
HTML through to the template

What about settings?

That was how we turned off I18N

(We don’t need I18N yet)

No messing with environment vars, etc.

from django.conf import settings

settings.configure(USE_I18N=False)

In Total:

60 Lines of glue code

And now we get to use all the nice
validation and form display that Django
affords us

Using bits of Django in
Other Contexts
2. Using Django’s ORM Stand-Alone

Why use ORM Stand-
Alone?

Probably because you like the API more
than other solutions out there

Maybe you already have Django apps that
define models, and you want to use them
outside of a web context

Steps to make this work

Make sure the app with models is on your
python path

Call settings.configure with your DB info

(Optionally copy manage.py to your proj.)

Import your models and use them

Using WSGI
Middleware with

Django

WSGI Middleware

For some reason, most Django users don’t
use it

It’s easy to use with Django

Start by looking at Repoze

Repoze Examples
repoze.bitblt - Automatically scales
images

repoze.squeeze - Merges JS/CSS
automatically based on statistical analysis

repoze.profile - Aggregates Python
profiling data across all requests, and
provides an HTML UI for viewing the data

Typical .wsgi File

import os,sys
sys.path.append(‘/usr/local/django’)
os.environ[‘DJANGO_SETTINGS_MODULE’ = \
 ‘mysite.settings’

from django.core.handlers.wsgi import \
 WSGIHandler

application = WSGIHandler()

Middleware .wsgi File
import os,sys
sys.path.append(‘/usr/local/django’)
os.environ[‘DJANGO_SETTINGS_MODULE’ = \
 ‘mysite.settings’

from django.core.handlers.wsgi import \
 WSGIHandler
from repoze.profile.profiler import \
 AccumulatingProfileMiddleware as P

application = P(
 WSGIHandler(),
 log_filename=’/tmp/profile.log’
)

Other Cool Non-
Standard Stuff

YardBird - IRC using Django’s URL
mapping to match messages and views to
handle the callbacks

Djng - Microframework built on Django

Jngo - Single-File Django CMS

Questions?

Twitter: @ericflo

http://www.eflorenzano.com/

http://mochimedia.com/jobs.html

http://www.eflorenzano.com
http://www.eflorenzano.com
http://mochimedia.com/jobs.html
http://mochimedia.com/jobs.html

