django

Eric Florenzano

PyCon, Atlanta, GA,
February 19,2010

Why give this talk?

Why give this talk?

=»“| tried to bring Django into my workplace,
but we would have had to customize things
so much that it wouldn’t be worth it.”

Why give this talk?

=»“| got fed up with the restrictive template
langauge. It's too bad since | liked all the
other stuff, but now I'm back in PHP.”

Non-Standard Django

=»Two Main Categories

=»Choosing alternatives to what Django
offers

=»Using bits of Django in other contexts

The main thing

=»It’s not as hard as you think it's going to be

Choosing Alternatives
to what Django offers

1. Using Jinja2 With Django

Using Jinja2

=<»What is it?
=»An alternative templating system

=»|t makes different tradeoffs from
Django’s template system

=»Sometimes Jinja2 makes more sense

Using Jinja2

=»We created an app called django_ext
=»It mirrors Django’s layout exactly

=»But we swap out Django’s template
rendering ideas for Jinja2’s equivalent

Using Jinja2 (Cont’d)

from django.shortcuts import render_to_response

from django_ext.shortcuts import render_to_response

Using Jinja2 (Cont’d)

IMPORTS

from django.conf import settings

from django.http import HttpResponse

from django.template.context import get_standard_processors
from jinja2 import FileSystemLoader, Environment

ONE INSTANTIATION
env = Environment(

loader=FileSystemLoader(settings.TEMPLATE_DIRS)
)

ONE 5-LINE FUNCTION
def render_to_response(tmpl, dct, reg=None,
mimetype=settings.DEFAULT_CONTENT_TYPE):
for processor in get_standard_processors():
dct.update(processor(request))
rendered = env.get_template(tmpl).render(**dct)
return HttpResponse(rendered, mimetype=mimetype)

Using Jinja2 (Cont’d):
Imports

from django.conf import settings

from django.http import HttpResponse

from django.template.context import \
get_standard_processors

from jinja2 import FileSystemlLoader

from jinja2 import Environment

Using Jinja2 (Cont’d):
Instantiation

1d = FileSystemLoader(settings. TEMPLATE_DIRS)

env = Environment(loader=1d)

Using Jinja2 (Cont’d):
One 5-Line Function

def render_to_response(tmpl, d, reg=None,
m=settings.DEFAULT_CONTENT_TYPE):
for processor in get_std_processors():
dct.update(processor(request))
rendered = env.get_tmpl(tmpl).render(*x*d)

return HttpResponse(rendered, mimetype=m)

That's pretty much it!

Note: in Django 1.2,
you can just write a
template loader.

What about my apps?

=»Truth is, some of them will work with
Jinja2, and some of them won't

=»|f they won't, you don’t need to throw
them away...

=»They're free code that you can use to go
95% of the way

=»Just modify it to use Jinja2

Choosing Alternatives
to what Django offers

2. Not using django.contrib.auth

Why not use auth?

=»When using it will be more difficult than
not using it

=»When using it will make your code less
straightforward than not using it

e.g. Writing a Facebook App

Facebook App Basics

=»You don’t render HTML to the user

=»You render FBML, which Facebook
assembles and renders for the user

=» User = Facebook — Django — Facebook — User

=»No such thing as user registration

=»You're given a unique id for each user

How to tackle this?

=»Didn’t even attempt to make it fit the
django.contrib.auth paradigm

=»We just plain don’t use the User model

=»Created a tiny app with one model whose
PK is the Facebook User ID

=>\\rote one decorator function to redirect to
an authorization page if not auth’d

Time Taken

=»About 45 minutes to create our custom app

=»About 1 hour to convert the few apps that
we needed to using our new model

=»Note we didn’t discard the apps

Advantages

=P Straightforward code with clear intent

=»Didn’t waste time trying to shoehorn
Facebook User IDs into the username field
of the User model

=»Reduced overhead (no need for any of the
auth or sessions machinery)

=P Still get to use the rest of the Django stack

Disadvantages

=»Had to write some of our own stuff

=»Had to modify apps

Choosing Alternatives
to what Django offers

3. Not Using the ORM

Why not use the ORM?

=¥»|ntegrating with complex legacy databases

=»Using a database that the ORM doesn’t
support

=»e.g. Talking to a non-relational database
=»You're not talking to a “database”

Wait a minute...
Database backends

are pluggable!

=»You won't have time
=»It might not make sense

=»e.g. writing a backend for Cassandra

Real-world example

=P Service for accessing/modifying data
=»Based on Pylons
=»Speaks HTTP + JSON
=»Talks to a PostgreSQL database

=»Written before Django was introduced to
this workplace

Web Service Example

=»curl -d ‘{“s”: “bloons"} -H ‘content-type:
application-json’ http: //server-name/
metaflip/games/get_game by slug

=»{“tag”: “eb5d4e50c49bc832", “name”:

n i

“Bloons”, “approved”: true, “width":
640, ...)

=»Have existing clients written to use this

http://example.com/metaflip/games/get_game_by_slug
http://example.com/metaflip/games/get_game_by_slug
http://example.com/metaflip/games/get_game_by_slug
http://example.com/metaflip/games/get_game_by_slug

Now we want to create
a Django app that
wants to use this data

We've got a choice...

=»Don’t use Django
=»Use Django

=»Create models for these objects, and
maintain them when we change the

database, etc.
OR
=»Just use what we've already got

How that app looks:

games/
__1nit__.py
urls.py
V1ews. py
models.py # Intentionally Empty
tests.py
context_processors.py
templatetags/
__1nit__.py
games_tags.py

Here's a view:

from my_lib import games_client as g

def play(request, game_slug=None):
game = g.get_game_by_slug(game_slug)
1f not game:
ralse Http404
return render_to_response(
‘games/play.html’,
{ ‘game’ : game},

What about the admin?

=»We already had one, written in Pylons
=»|f not we would have had to write one

=»Annoying: yes, show-stopping: no

Other similar services

=»High score leaderboards

=»Achievements

=»Game plays

Using bits of Django in
Other Contexts

1. Using Django’s Forms in Pylons

Using Forms in Pylons

=»Initial implementation: No form library
=»Parsed the POST and validated in-line
=»Looked at other alternatives
=»FormEncode

=»FormBuild

=<»WTForm (actually tried using this)

Decided we liked
Django’s Best

=»>How do we make this work?

=»Turn off Django’s 118N handling

=»New Form base class to coerce WebOb
(Unicode)MultiDicts into a QueryDict

=»A Genshi wrapper to allow the form'’s
HTML through to the template

What about settings?

=»That was how we turned off 118N
=»(We don’t need I18N yet)

=»No messing with environment vars, etc.

from django.conf import settings

settings.configure(USE_I18N=False)

In Total:

=260 Lines of glue code

=»And now we get to use all the nice
validation and form display that Django
affords us

Using bits of Django in
Other Contexts

2. Using Django’s ORM Stand-Alone

Why use ORM Stana-
Alone?

=»Probably because you like the APl more
than other solutions out there

=»Maybe you already have Django apps that
define models, and you want to use them
outside of a web context

Steps to make this work

=»Make sure the app with models is on your
python path

= Call settings.configure with your DB info
=»(Optionally copy manage.py to your proj.)

=»Import your models and use them

Using WSG]
Middleware with
Django

WSGI Middleware

=»For some reason, most Django users don’t
use it

=P»It's easy to use with Django

=P Start by looking at Repoze

Repoze Examples

=»repoze.bitblt - Automatically scales
Images

=»repoze.squeeze - Merges JS/CSS
automatically based on statistical analysis

=»repoze.profile - Aggregates Python
profiling data across all requests, and
provides an HTML Ul for viewing the data

Typical .wsgi File

1mport os,sys
sys.path.append(‘/usr/local/django’)
os.environ[‘DJANGO_SETTINGS_MODULE’ = \

‘mysite.settings’

from django.core.handlers.wsgi import \
WSGIHandler

application = WSGIHandler ()

Middleware .wsgi File

import os,sys
sys.path.append(‘/usr/local/django’)
os.environ[‘DJANGO_SETTINGS_MODULE’ = \

‘mysite.settings’

from django.core.handlers.wsgi import \
WSGIHandler

from repoze.profile.profiler import \
AccumulatingProfileMiddleware as P

application = P(
WSGIHandler (),
log_filename=’/tmp/profile.log’

Other Cool Non-
Standard Stuff

=»YardBird - IRC using Django’s URL
mapping to match messages and views to
handle the callbacks

=»Djng - Microframework built on Django
=»)ngo - Single-File Django CMS

Questions?

=»Twitter: @ericflo

=»http: //www.eflorenzano.com/
=»http: //mochimedia.com /jobs.html

http://www.eflorenzano.com
http://www.eflorenzano.com
http://mochimedia.com/jobs.html
http://mochimedia.com/jobs.html

