
LeafyChat, DjangoDose,
Hurricane, and PyCon,

Lessons Learned with the
Real-Time Web and Python

Alex Gaynor
PyCon 2010, Atlanta, GA

What is "the real time web"?

Sounds like marketing!

Ajax!

Comet!

Just
like

Ajax!

Pushing, not pulling

BA
D!

HTTP is stateless
•HTTP is basically designed for
browsers pulling stuff from servers
•Normal socket code is a 2 way
connection
•Comet is all about making the
browser a bit more like normal
socket code

Technologies

There are a ton of ways
to do HTTP-push. And at
least as many libraries to

help you. Not enough
time in this talk!

A tale of 4 websites

LeafyChat
•2009 Django Dash
•2nd place!
•Real time IRC, in your browser

•Built in 48 hours
•Django "frontend" (it was the
DjangoDash...)
•Orbited, proxying to a twisted
daemon that handed browser
connections and IRC connections

Browse
r

Django
Port 80

Orbited
Port
8100

Twisted
Port 8200

FreeNode

JSON
•We pass around JSON packets that
look like:

{
 "type": "message",
 "from": "Alex_Gaynor",
 "to": "ericflo",
 "body": {
 "msg": "Hey, what's up",
 "timestamp": "something",
 }
}

JSON
•Both the client and server deal in
this JSON
•Client sends it to the server
•Server sends it to clients
•Client takes messages and turns
them into calls to our UI lib (built on
jQuery) which update the browser

Conclusions
•It all sort of works (we got 2nd place!)
•It's messy

•IRC in the same process as comment,
so it doesn't scale (and isn't isolated)
•When you want to add new
functionality it goes on the server, the
client, and the UI lib

DjangoDose
•Built in a week before DjangoCon
(this is less time than LeafyChat,
since we weren't working 24/7)
•Built on twisted, orbited, Django (it
was DjangoCon), and StompMQ

•A live feed of everything that was
going on on Twitter about
DjangoCon (also upcoming talks)
•Also has it's own localized trending
topics (with our crappy home grown
algorithm)

How it worked
•Client joins a MorbidMQ, on initial
connect it joins an initial channel,
and a feed channel.
•The initial channel spits out the
most recent items when someone
joins (so you always have some
data)
•The feed channel spits out JSON for
tweets when they come in

•Instead of individual
communications (like LeafyChat),
just one channel on a message
queue (plus the initial channel)
•Works really well when all clients
are receiving the same channel.
•But not perfect

•When a new user connected to the
stream they'd actually get the initial
items 3 or 4 times, because the
server didn't know when they'd
recieved it (no individualized
connections)
•Plus they probably got the data
multiple times if there were multiple
simultaneous connections

•Also, it had the same problems
LeafyChat (no isolation between
Comet and Twitter connections)

Hurricane
•An attempt to take the lessons
learned from DjangoDose (and
LeafyChat) and build a framework
around them
•Based on the idea of things being
producers and consumers

Producer and Consumers

One Producer/Consumer
to Rule Them All

It's all about Comet!

Technologies
•Long polling with jQuery
•Tornado Server
•Multiprocessing to have producers
and consumers run concurrently
•And a queue abstraction over
multiprocessing.Queue, AMQP, and
anything else you could throw at it!

We got it working
•We had a twitter feed example
•and a chat room

The Problems
•Entire application state was in
memory
•Producer and consumers were in
different processes
(multiprocessing), but not isolated
•We couldn't get the abstractions
right for the comet producer

Abstractions
•How do you know which user is
which?
•How do you know what messages
go to what users?

Frameworks

We ended up rewriting
the entire Comet

Producer/Consumer
when we wanted to do

anything fancy

PyCon 2010
•Do the same thing as DjangoCon,
but better.
•A chance to learn our lessons!
•More than just twitter: add flickr,
and github, and bitbucket, and
more!

A lot more data

A lot more users

What is Redis?
•A key-value store
•With real datastructures, list, sets,
hashes.

How do we use it?
•Buckets for data

Other Technologies

•Orbited proxies to a twisted
daemon
•Twisted daemon uses a blocking
operation on redis to be notified
when a new item comes in
•Backend processes feed items into
redis and let listeners know when
theres new items

Problems Solved
•One backend process per item
(one for twitter, one for parsing
RSS, etc.) -> better isolation
•Don't reinvent Orbited. It's really
good at what it does.

The Take Away

Isolate Your Processes

Use Orbited, It's an
Awesome Abstraction

Asynchronous
Programming is Still Hard

Generator Based
Asynchronous

Programming Rocks

@alex_gaynor on twitter

http://alexgaynor.net

slideshare.com for the
slides

	LeafyChat, DjangoDose, Hurricane, and PyCon, Lessons Learned with the Real-Time Web and Python
	What is "the real time web"?
	Ajax!
	Comet!
	Pushing, not pulling
	Slide 6
	HTTP is stateless
	Technologies
	There are a ton of ways to do HTTP-push. And at least as many libraries to help you. Not enough time in this talk!
	A tale of 4 websites
	LeafyChat
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	JSON
	页 17
	Conclusions
	DjangoDose
	Slide 20
	Slide 21
	Slide 22
	How it worked
	Slide 24
	Slide 25
	Slide 26
	Hurricane
	Producer and Consumers
	One Producer/Consumer to Rule Them All
	It's all about Comet!
	页 31
	We got it working
	The Problems
	Abstractions
	Frameworks
	We ended up rewriting the entire Comet Producer/Consumer when we wanted to do anything fancy
	Slide 37
	PyCon 2010
	A lot more data
	Slide 40
	What is Redis?
	How do we use it?
	Other Technologies
	Slide 44
	Problems Solved
	The Take Away
	Isolate Your Processes
	Use Orbited, It's an Awesome Abstraction
	Asynchronous Programming is Still Hard
	Slide 50
	Generator Based Asynchronous Programming Rocks
	@alex_gaynor on twitter

