
PubSubHubbub, and
App Engine

Brett Slatkin
Software Engineer
Google Inc.
February 20th, 2010

Agenda

Intro
Demo
Howto
Building a hub
Progress

Questions

Post in comments on Buzz!

http://tinyurl.com/hubbub-pycon
Project site

http://pubsubhubbub.googlecode.com

http://tinyurl.com/hubbub-pycon
http://pubsubhubbub.googlecode.com

Intro

What is PubSubHubbub?

A simple, server-to-server publish/subscribe protocol
Uses HTTP-- worse is better
Turns Atom and RSS feeds into real-time streams
A single API for web-scale, low-latency messaging
Three participants: Publisher, Subscriber, Hubs

Publisher SubscriberHub

1. Subscriber polls Publisher’s feed. The feed contains a link to
the Hub.

Publisher Subscriber

Give me your latest
content for feed X,
please.

I've delegated
distribution of that
content to this Hub:

2. Subscriber POSTs subscription request to the Hub.

Publisher Subscriber

I want to subscribe to
feed X. Send updates

to this URL:

Hub

3. Hub POSTs to the endpoint URL to verify the request was
authentic; Subscriber responds with confirmation to the Hub.

Publisher Subscriber

Yup, that was really
me, not a DoS

attacker.

Hub

Hey there! Did you
really send this

request?

4. Publisher notifies Hub about updates by POSTing feed URLs
to the Hub; Hub pulls the feed again to find new entries.

Publisher SubscriberHub

I have new content
for feed X for you!

Give me your latest
content for feed X,

please.
Here you

go.

5. When Hub receives new update to feed X, it POSTs the
update to the Subscriber’s endpoint URL.

Publisher SubscriberHub

New update to feed
X! Here you go:

6. If feed X has multiple subscribers, the Hub sends updates to
all of them. This reduces load on the Publisher.

Publisher Hub

New update to feed
X! Here you go:

Demo

Howto

How-to for Publishers

1. Add a declaration in your feed with your Hub(s) of choice
 <link rel="hub"

 href="https://pubsubhubbub.appspot.com/"/>

2. Add something to your feed!

3. Send a ping to your Hubs with the feed URL
POST / HTTP/1.1
Content-Type: application/x-www-form-urlencoded
...

hub.mode=publish&hub.url=<your feed>

4. 204 response = Success, 4xx = Bad request, 5xx = Try again

How-to for Subscribers
1. Detect a Hub declaration in a feed
2. Send a subscribe request to the feed's Hub

POST / HTTP/1.1
Content-Type: application/x-www-form-urlencoded
...

hub.mode=subscribe&hub.verify=sync&
hub.topic=<feed URL>&hub.callback=<callback URL>

3. Hub will send a request to verify the subscription

GET /callback?hub.challenge=<random> HTTP/1.1

HTTP/1.1 200
...
<echo random>

How-to for Subscribers
Process new content from Hubs

POST /callback HTTP/1.1
Content-Type: application/atom+xml
...
<?xml version="1.0" encoding="utf-8"?>
<feed xmlns="http://www.w3.org/2005/Atom">
 <title>Awesome feed</title>
 <link rel="hub"
 href="http://pubsubhubbub.appspot.com"/>
 ...
 <entry>
 ...
 </entry>
</feed>

Building a hub

The role of the Hub
Distinct functions

Accept and verify subscriptions to new topics
Receive pings from publishers, retrieve content
Extract new/updated items from feed
Send all subscribers the new content

Logical component
Publishers may be their own Hub
Combined Hub/Publisher has local speed-up

The role of the Hub
Scalability

of subscribers & feeds, update frequency
Delegation of content distribution (= bandwidth)

Reliability
Retry fetch, delivery, idempotence

Pipeline

Receive publish events
1. Write a "feed to fetch" record

URL to update, TTL
Primary key = URL hash (DHT write)

2. Enqueue a task

Pipeline

Fetch feeds
1. Fetch the feed
2. Parse its contents

SAX parser
3. Check for known feed entries

Primary key = Atom ID hash (DHT parallel lookup)
Diff by content hash

4. Save the diff to an "event to deliver" record
5. Enqueue a task

Pipeline

Deliver notifications
1. Query the list of "subscription" entities

Key-ordering = Bigtable linear scan
2. Send async URL fetch calls to N of them
3. Save the failures to the "event to deliver" record

Retry later
Debugging

4. Enqueue a task to handle next N

Pipeline

Implementation
App Engine app

Each pipeline stage is a request handler
Stages run through one or more queues
Each stage is repeatable without harm (idempotent)

Task queue API magic
Fast-path execution
Transactional tasks prevent drops

Transactional tasks
def txn():
 url = 'http://example.com/feed.xml'
 f = FeedToFetch(url=url)
 f.put()
 taskqueue.add(
 '/worker/fetch',
 params=dict(url=url),
 transactional=True)

db.run_in_transaction(txn)

Progress

Progress
Over 100 Million feeds are PubSubHubbub-enabled
Companies: Google, Posterous, FriendFeed (FB), livedoor, Six
Apart, LiveJournal, LazyFeed, Superfeedr, MySpace,
Tumblr, TwitterFeed, Netvibes, Cliqset, Gnip, Gawker...
Google products: Buzz, FeedBurner, Blogger, Reader shared
items, Google Alerts, Fastflip, ...

Publisher clients: Perl, PHP, Python, Ruby, Java, Haskell, C#,
MovableType, WordPress, Django, Zend, Drupal
Active mailing list with 350+ members
More publishers, subscribers, hubs, apps on the way

Project info

Project page:
http://pubsubhubbub.googlecode.com
Full reference Hub source code with tests
Example publisher and subscriber apps

Buzz API

http://code.google.com/apis/buzz

http://pubsubhubbub.googlecode.com
http://code.google.com/apis/buzz

