

Evolving Your Framework Under
Fire

Presented to the
PyCon 2010 Atlanta
20 February 2010

Tres Seaver
Agendaless Consulting, Inc.
tseaver@agendaless.com

BFG: What is it?

● “Pay only for what you eat”
● Draws on decade of using / maintaining large,

DWIMish framework (Zope, Plone)
● Minimalism: URL dispatch, templating, and

security

BFG: Do I Need It?

● Speed
● Learn only what you

need
● “I'll have what he's

having”

Why not Zope / Plone?

● Zope has cool concepts
– Hierarchy

– Fine-grained security

– Easy extensibility

– Component architecture

● “Pay for what you might need”
– Steep learning curve

– Extra “help” impedes performance

Why not Django / Pylons /
TurboGears?

● Core Zope features harder to model
● Similar issues with “full stack” models
● Graph traversal rocks ;)

About KARL

● The Open Society Institute
● Mission-critical KM / extranet
● No anonymous requests
● I18N important

– Content creation in users' languages of choice
(French, Hungarian within OSI)

KARL UI Constraints

● “Coherent” UI
choices

● Prefer consistency
to features

● Aimed at casual
users, rather than
power users

“Community” is core abstraction

● Membership is invitation-based
● Members collaborate on content

– Blog

– Wiki

– Calendar

– File sharing

● Fierce security requirements

Prior Development

● Original development on Plone / Windows,
2006 - 2008

● Migrated to Plone / Linux, summer 2008
– 2500 users

– 400+ “communities”

– 75,000 content pages

Why port KARL to BFG?

● Feature development slowed
● Stability issues
● Performance issues

– 1 – 10 requests / second

● OSI actively marketing KARL to peer
organizations

Doing the port

● “Transparent” port
– No visible changes to user experience

● 4 – 5 developers dispersed across timezones
● Spread over 6 months
● Migration of content eased by prior migration

from KARL1 to KARL2

Results of the port

● KARL now runs at 100+ requests / second on
developer laptops

– Fully-authenticated

– Non-cached

– Most expensive page

– Faster on server hardware (~350 r/s)

● Stability / availability no longer issues
● Reduced hardware requirements

Evolving the framework to meet
KARL's needs

● Move towards documentation-centric approach
helped dispersed teams stay productive

● 100% test coverage as a minimum requirement
● Forcible conversion of encoded text at

application boundaries
● Judicious use of component architecture to

isolate customer-specific policies
● Move to make views more easily testable

BFG during KARL 3 development

● 40 BFG releases between initial “spike” (2008-
09) and roll-out (2009-06)

● Dozens of releases of other supporting
components

– chameleon templating engine

– repoze.who authentication

– Other repoze middleware, libraries

● BFG documentation kept in sync with feature
development

Since KARL 3.0 launch

● KARL now at 3.12 in production
● 5 customer instances (3 non-OSI)
● Dozens of BFG releases

– BFG 1.0 (2009-07)

– BFG 1.1 (2009-11)

– BFG 1.2 (2010-02)

● Supporting packages continue active
development

Lessons Learned

Lesson: Reuse can be overvalued

● Costs of reuse vs.
benefits

● Fork now, merge later
● Criteria for

dependability
– Docs!

– Test Coverage

– Readability

– Community

– Docs!

Lesson: Repeatability wins

● Cultural: “works on my
laptop” is not enough

● Frameworks can help
by enabling / modeling
repeatable testing,
builds

Lesson: Optimize by removal

● Easiest code to
optimize is the code
which isn't there

● Remove indirections /
abstractions which
provide unneeded
flexibility or features

● Framework which
mandates features
makes everybody pay

Lesson: Test coverage necessary,
not sufficient

● “100%: the least you
can do”

● Testing semantics
may require more

● Unit testing: “Did I
break anything?”

● Functional testing:
“Are we there yet?”

Lesson: Backward compatibility can
be broken

● Stripping away cruft
wins

● Document required
changes

● Automate evolution of
persistent data

Lesson: Make measurements easy,
obvious

● “Speedometer” in
page header

● Test breakage reports
● “Complexity” (stack

depth, function calls)
as a measure of both
speed, learning curve

Lesson: Documentation hurts so
good

● Explain (possibly)
dumb decisions
before implementing

● Keep the team
productive

● End up with a nice
book

– Buy it at the expo!

Resources

● KARL Project: http://karlproject.org/
● BFG Home: http://bfg.repoze.org/
● BFG Docs: http://docs.repoze.org/bfg/1.2/
● BFG Book: http://bfg.repoze.org/book
● IRC: irc://irc.freenode.net/#repoze
● BFG open space @ 4:00 PM today

http://karlproject.org/
http://bfg.repoze.org/
http://docs.repoze.org/bfg/1.2/
http://bfg.repoze.org/book
irc://irc.freenode.net/#repoze

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

