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• What’s the Echo Nest Remix API?

• Why change it?

• Try to make the API more fluent/expressive

• Try to make the API more capable with 
multitrack/effects

• How’s that working out?

Introduction



http://the.echonest.com/



• “Music Intelligence” company based near Boston

• Data feeds, Recommendation engine…

• Music listening API (“Analyze”)

• Oriented towards mixed/recorded music

• Global features

• Key, tempo, meter, &c

e Echo Nest
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• …as originally released

• Python libraries, using NumPy

• Loads audio from file

• Uploads to Web API

• Uses Analyze transparently via the web

• Glues together metadata and audio

e Echo Nest Remix API



Genesis of Remix API

• Key abstraction: AudioQuantum class, unifying 
rhythmic units & segments

• Start & duration 

• Audio output

• Make a list of AudioQuantums

• Collect the samples from the original file, 
indexed by the start/duration in each 
AudioQuantum
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• Towards a more declarative style

• Filtering, selection, sorting, navigation

• Flexibility in multiple dimensions

• Many sources, effects, rendering

Modifying Remix





• Introducing the AudioQuantumList class

• Clear that the typical pattern was to create lists 
from source lists 

• Filtering, Selection, Sorting on various features

•e filtering method is “that()”

• Makes for interesting naming (and definition) of 
filters

Making Remix more Fluent



mybeats = song.analysis.beats.that(fall_on_the(1))



• Implement back-links from AudioQuantum to 
AudioQuantumList

•e rhythm hierarchy is exposed via a series of 
“that()” queries on selected 
AudioQuantumLists

•  tatum.parent() → beat

•  beat.parent() →  bar

Granting contextual 
knowledge
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•sorted_by()
segments.sorted_by(timbre_distance_from(x))

•beget() allows you to return an arbitrary list

•changed_by() changes in place (on a 
conditional)

remix = song.analysis.beats          \
    .changed_by(adding('snare.wav'), 
        if_they=fall_on_the(2)) 

More fluency



• What if you want to remix more than one 
source?

•e Simultaneous class

• An AudioQuantumList of elements that 
sound at the same time

• Experiment with a rendering pass

• Good with a couple sources

Multidimensional



http://www.flickr.com/photos/futurilla/3567392514/



• Walk a list of lists

• Necessitates lazy loading (and thinking about 
memory management)

• Accumulate the results

• Use a 32-bit sample array for lazy users

• Normalise and output

e rendering chain



•e UserAudioQuantum was born

• A sort of prototype-object, inheriting from 
(proxying) the original segment

• Created upon user access

• Causally-connected self-representation

• Insert modification functions into the rendering 
chain

Audio effects



ree-dimensional 
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ree-dimensional 
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What happened?

• A declarative, fluent, natlang approach

• More connections, exposed with syntactic sugar

• Change from eager, linear rendering to something 
three-dimensional & lazy

• A framework for defining and applying effects



    from echonest import audio

    audio.AudioFile("input.mp3").analysis \
      .beats                              \
      .changed_by(reversing,              \
        if_they=fall_on_the(4))           \
      .encode("output.mp3")



Win/Fail?

• Filtering methods

• Navigation

• Multiple sources

• Effects



Win/Fail?

• Filtering methods

• Navigation

• Multiple sources

• Effects ???



http://go.atl.me/remix-api
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