
Lancaster
University

Remixing Music
Pythonically

Adam T. Lindsay
PyCon 2010, Atlanta, GA, USA

@atl
http://atl.me/remix

• What’s the Echo Nest Remix API?

• Why change it?

• Try to make the API more fluent/expressive

• Try to make the API more capable with
multitrack/effects

• How’s that working out?

Introduction

http://the.echonest.com/

• “Music Intelligence” company based near Boston

• Data feeds, Recommendation engine…

• Music listening API (“Analyze”)

• Oriented towards mixed/recorded music

• Global features

• Key, tempo, meter, &c

e Echo Nest

waveform

auditory spectrogram

loudness curve

raw detection function

filtered detection function

0 0.5 1 1.5 2 2.5 3 sec.

! -2

! -1

0

1

2
x 10

4

0 0.5 1 1.5 2 2.5 3 sec.
0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

1

5

10

15

20

25

0 0.5 1 1.5 2 2.5 3 sec.

0 0.5 1 1.5 2 2.5 3 sec.

0 0.5 1 1.5 2 2.5 3 sec.

w
a
v
e
 f
o
rm

2
5
-b

a
n
d
 s

p
e
c
tr

o
g
ra

m
lo

u
d
n
e
s
s

ra
w

 d
e
te

c
ti
o
n
 f
u
n
c
ti
o
n

s
m

o
o
th

 d
e
te

c
ti
o
n
 f
u
n
c
ti
o
n

• …as originally released

• Python libraries, using NumPy

• Loads audio from file

• Uploads to Web API

• Uses Analyze transparently via the web

• Glues together metadata and audio

e Echo Nest Remix API

Genesis of Remix API

• Key abstraction: AudioQuantum class, unifying
rhythmic units & segments

• Start & duration

• Audio output

• Make a list of AudioQuantums

• Collect the samples from the original file,
indexed by the start/duration in each
AudioQuantum

start:

end: , start:

end: , start:

end:]

start:

end:[, start:

end: , start:

end: , start:

end: ,

, start:

end:

start:

end: , start:

end: , start:

end:]

start:

end:[, start:

end: , start:

end: , start:

end: ,

, start:

end:

start:

end:[, start:

end: , start:

end: , start:

end:], start:

end:

start:

end: , start:

end: , start:

end:]

start:

end:[, start:

end: , start:

end: , start:

end: ,

, start:

end:

start:

end:[, start:

end: , start:

end: , start:

end:], start:

end:getpieces(,) .

start:

end: , start:

end: , start:

end:]

start:

end:[, start:

end: , start:

end: , start:

end: ,

, start:

end:

start:

end:[, start:

end: , start:

end: , start:

end:], start:

end:getpieces(,) .

• Towards a more declarative style

• Filtering, selection, sorting, navigation

• Flexibility in multiple dimensions

• Many sources, effects, rendering

Modifying Remix

• Introducing the AudioQuantumList class

• Clear that the typical pattern was to create lists
from source lists

• Filtering, Selection, Sorting on various features

•e filtering method is “that()”

• Makes for interesting naming (and definition) of
filters

Making Remix more Fluent

mybeats = song.analysis.beats.that(fall_on_the(1))

• Implement back-links from AudioQuantum to
AudioQuantumList

•e rhythm hierarchy is exposed via a series of
“that()” queries on selected
AudioQuantumLists

• tatum.parent() → beat

• beat.parent() → bar

Granting contextual
knowledge

Navigation

Tatums

Beats

Bars

 Song

Navigation

Tatums

Beats

Bars

 Song

beat.parent()

Navigation

Tatums

Beats

Bars

 Song

beat.next()

Navigation

Tatums

Beats

Bars

 Song

beat.prev(2)

Navigation

Tatums

Beats

Bars

 Song

beat.children()

Navigation

Tatums

Beats

Bars

 Song

beat.group()

•sorted_by()
segments.sorted_by(timbre_distance_from(x))

•beget() allows you to return an arbitrary list

•changed_by() changes in place (on a
conditional)

remix = song.analysis.beats \
 .changed_by(adding('snare.wav'),
 if_they=fall_on_the(2))

More fluency

• What if you want to remix more than one
source?

•e Simultaneous class

• An AudioQuantumList of elements that
sound at the same time

• Experiment with a rendering pass

• Good with a couple sources

Multidimensional

http://www.flickr.com/photos/futurilla/3567392514/

• Walk a list of lists

• Necessitates lazy loading (and thinking about
memory management)

• Accumulate the results

• Use a 32-bit sample array for lazy users

• Normalise and output

e rendering chain

•e UserAudioQuantum was born

• A sort of prototype-object, inheriting from
(proxying) the original segment

• Created upon user access

• Causally-connected self-representation

• Insert modification functions into the rendering
chain

Audio effects

ree-dimensional
remixing

Time

Tr
ac

ks

Eff
ec

ts

ree-dimensional
remixing

np.concatenate()

n
p
.
s
u
m
(
)

g(
f(
x)
)

What happened?

• A declarative, fluent, natlang approach

• More connections, exposed with syntactic sugar

• Change from eager, linear rendering to something
three-dimensional & lazy

• A framework for defining and applying effects

 from echonest import audio

 audio.AudioFile("input.mp3").analysis \
 .beats \
 .changed_by(reversing, \
 if_they=fall_on_the(4)) \
 .encode("output.mp3")

Win/Fail?

• Filtering methods

• Navigation

• Multiple sources

• Effects

Win/Fail?

• Filtering methods

• Navigation

• Multiple sources

• Effects ???

http://go.atl.me/remix-api

http://atl.me/remix

@atl

Where?

Lancaster
University

