
The Python & The Elephant
Large Scale Natural Language Processing

with
NLTK & Dumbo

1

Nitin Madnani
PhD Student

Department of Computer Science
Institute for Advanced Computer Studies

http://www.umiacs.umd.edu/~nmadnani
@haikuman

Jimmy Lin
Associate Professor

The iSchool
Institute for Advanced Computer Studies

http://www.umiacs.umd.edu/~jimmylin
@lintool

Presented at PyCon 2010
Atlanta, Georgia

Prologue

• Natural Language Processing (NLP) ⇔
Computational Linguistics (CL) [this talk]

• Don’t worry about grokking all the code now!
[Everything’s on the web and reproducible!]

• Might have to go a bit fast; Please hang on!

• Even if you don’t care about NLP, please stick
around for entertaining word association results

• Did I mention that my mom thinks I am really
funny?

2

Introduction to NLP

• Extremely interdisciplinary field of study
[Linguistics+Computer Science+Statistics]

• Some real world NLP problems:

- Information Retrieval [Google/Bing/Yahoo!]

- Statistical Machine Translation [Google Translate]

- Entity and Relation Extraction (“Jimmy is Nitin’s boss”)

- Automatic Text Summarization [Columbia Newsblaster]

- Automatic Speech Recognition [Dragon NaturallySpeaking]

3

NLP is harder than it looks!

• Not every language has “words”!
大江东流 (“the big river flows to the east”)

• Ambiguities galore

- Lexical (“bank” vs “bank”)

- Syntactic:

‣ I saw the man with the telescope [Attachment]

‣ I cooked her duck [Structure]

• Interesting (and challenging) area of research

4

Opinions on NLP vary though ...

Original version at http://xkcd.com/114/ 5

Python & NLP

• Python has:

- Native unicode support

- Extremely versatile standard library

- Easy yet powerful text processing

- Easily extensible using C/C++ (SWIG, Pyrex/Cython)

- Low barrier to entry/Rapid prototyping

• Not all the “batteries” I want as an NLPer

• Enter NLTK: Open source Python NLP Toolkit

6

NLTK1: A Brief Introduction

• Fully self contained

- Real-world data in the form of 50 corpora (raw & annotated)

- Tokenizers, part-of-speech taggers, parsers, stemmers, machine
learning tools etc.

• Integrated with WordNet2, a database of semantic
relationships for English nouns and verbs

- Synonymy, Hyp(er/o)nymy [is-a], Holonymy/Meronymy [part-of]

• Extremely active developer/user community

• The “Whale” book3

1http://www.nltk.org 2http://wordnet.princeton.edu/ 3http://oreilly.com/catalog/9780596516499/
7

A corpus is a body of
written text.

MapReduce in 120 seconds

• Functional Programming + Distributed Processing

• Every datum is a key, value pair

- Mappers & Reducers take (k, v)s and output (k,v)s

• All the user does is design the mapper and the reducer

• The execution framework handles everything else

- Scheduling

- Faults/Restarts

- Synchronization ...

8

MapReduce in 120 seconds

• Functional Programming + Distributed Processing

• Every datum is a key, value pair

- Mappers take (k, v)s and output (k,v)s

- Reducers take (k, v)s and output (k, v)s

• All the user does is design the mapper and the reducer

• The execution framework handles everything else

- Scheduling

- Faults/Restarts

- Synchronization ...
9

Screw this! W
here’s the picture?

MapReduce in Pictures

map map map map

Shuffle & Sort: aggregate values by keys

reduce reduce reduce

Counting Words
10

v1k1 v5k5v4k4v2k2 v3k3 v6k6

6c1a 2b 3c 5a 2c 7b 8c

1a 5 2b 7 2c 3 6 8

6a 9b 19c

MapReduce Implementations

• MapReduce™: Google’s C++ implementation

• Hadoop: Open-source Java implementation

• Dumbo: Python bindings for Hadoop Streaming

- Use any executable/script as mapper and reducer

- Allows using languages other than Java

- Read/Write lines from/to Unix standard streams

- Dumbo serializes to binary using typedbytes

11

Dumbo in Action

def mapper(k,v):
 for w in k.split(): yield w,1

def reducer(k,values):
 yield k,sum(values)

if __name__ == "__main__":
 import dumbo
 dumbo.run(mapper,reducer)

Counting Words
12

Does NLP need MapReduce?

• Google 5-gram corpus

- 5-gram: sequence of five words

- 1 trillion words, 24 GB compressed

• USENET corpus [Westbury Lab @ UAlberta]

- Public USENET postings between Oct’05-Jan’10

- 25 billion words, 28GB compressed

• ukWaC corpus [University of Bologna]

- Web crawl of the .uk domain; tokenized and POS-tagged

- 88 million sentences, 5.1GB compressed

13

A Pythonic Solution: NLTK + Dumbo

• Use NLTK for algorithms and data structures

• Use Dumbo for “Hadoopification”

• In this talk, I focus on the NLP task of word
association

- Common task in psycholinguistics in the context of
lexical retrieval, i.e., “what word Y (response) immediately
comes to mind when hearing the word X (stimulus)?”

- NLP version: Use a text corpus to figure out the word
that occurs the most “near” the stimulus word

14

Simple Word Association

• Work only with nouns

• Ignore non-content or “stop” words

• Rely on NLTK for data and data structures

- The bundled POS-tagged Brown corpus
[Brown University Standard Corpus of “Present-Day” American English]

- The bundled stopwords corpus

- The ConditionalFreqDist() data structure

‣ Basically counts #(w1|w2), i.e., how many times was w1
“associated with” w2 in the corpus

15

Simple Word Association
from nltk.corpus import brown, stopwords
from nltk.probability import ConditionalFreqDist

cfd = ConditionalFreqDist()
stopwords_list = stopwords.words('english')

def is_noun(tag):
 return tag.startswith('N')

for sentence in brown.tagged_sents():
 for (index, tagtuple) in enumerate(sentence):
 (token, tag) = tagtuple
 token = token.lower()
 if token not in stopwords_list and is_noun(tag):
 window = sentence[index+1:index+5]
 for (window_token, window_tag) in window:
 window_token = window_token.lower()
 if window_token not in stopwords_list\
 and is_noun(window_tag):
 cfd[token].inc(window_token)

Nitin Madnani, Getting Started on Natural Language Processing with Python, ACM Crossroads, Volume 13, Issue 1, 2007.

(‘man’, ‘NN’)

Count N2 with N1 if it
occurs within 5 words of it

Import stuff and initialize
CFD and stopword list

16

Simple Word Association Results

Nitin Madnani, Getting Started on Natural Language Processing with Python, ACM Crossroads, Volume 13, Issue 1, 2007.

print cfd['foo'].max() the word “best associated” with ‘foo’
(most frequently co-occurring)

Stimulus Response
bread butter
man woman
life death
tax collection

hospital admission
python amethystine
web earthmen(?)

justice frankfurter

17

Hadoopified Word Association

• Use Hadoop on an Amazon EC2 cluster

• Use ukWac corpus as input [freely available]

- POS-tagged but not as clean (real-world)

- More than just is_noun() and not in stopwords_list

• Rely on NLTK for FreqDist() data structure

- Just counts words i.e., #(w1)

- Basically a fancy dict()

- Hint: A CFD has a FreqDist() for each “condition”

18

Hadoopified Word Association
def mapper(key,value):
 sentence = value.split()
 for (i, tagtuple) in enumerate(sentence):
 token, tag = toktag(tagtuple)
 if we_like(token, tag):
 fd = FreqDist()
 token = token.lower()
 window = sentence[i+1:i+5]
 for windowtuple in window:
 wtoken, wtag = toktag(windowtuple)
 if we_like(wtoken, wtag):
 wtoken = wtoken.lower()
 fd.inc(wtoken)
 yield token, tuple(fd.items())

def reducer(key,values):
 finalfd = FreqDist()
 for fdstr in values:
 for k, v in fdstr:
 finalfd.inc(k, v)
 yield key, tuple(finalfd.items())

• Each mapper outputs a word and a list of tuples (FreqDist() ≈ a dictionary)
• For example, (‘foo’, [(‘bar’, 5), (‘baz’, 4),..., (‘zzz’, 10)])
• Each tuple list is a list of “associated” words & their “strength of association”
• Each reducer just combines all FreqDist’s for its word into one FreqDist()

•We call this the Stripes MapReduce design pattern (a stripe for each word)

H-fied Word Association Results

man     [[woman, 7994],[god, 4457],[match, 3567],...,[zzkj, 1]]

Every reducer produces a text file for each
word containing responses sorted by count

Stimulus Response
bread butter
man woman
life insurance
tax credit

hospital nhs
python code
web site

justice system

Stimulus Response
bread butter
man woman
life death
tax collection

hospital admission
python amethystine
web earthmen

justice frankfurter
20Brown ukWac

“holy”

“grail”

Did Hadoopifying help?

• What if we ran on 1 machine?

• Memory consumption: ~30GB

• Simple version takes 1 minute
to process the entire Brown
corpus (97,000 sentences)

• 88 million sentences will take
~15 hours on a single machine
[assuming memory’s okay(!)]

Estimated linear fit for memory size
VS

of sentences in Brown corpus

21

Did Hadoopifying help?

• Cluster: 1 master + 19 slave nodes; 3 mappers, 3 reducers each

• Input: 882 compressed files each containing 100,000 sentences (88 million)

• Input stored on S3; copied to cluster at launch (3 mins)

• Actual running time: 5 hours; 67% reduction (can be increased arbitrarily)

• Total cost of running cluster = 20*6*$0.085 = $10.20!
22

Summary

• Python is well suited to NLP in general but
missing NLP algorithms and data structures

• NLTK leverages Python and provides very
powerful and convenient NLP paraphernalia

• However, NLTK doesn’t scale well to “real”
datasets

• Dumbo + NLTK = Best of both worlds!
[Convenience + Scalability]

23

If you want more ...

• Replicate my experiments
[http://www.umiacs.umd.edu/~nmadnani/pycon/replicate.pdf]

• Read Tom White’s Hadoop book
[http://oreilly.com/catalog/9780596521981]

• Read Jimmy’s (upcoming) book on designing
MapReduce algorithms for NLP
[http://www.umiacs.umd.edu/~jimmylin/book.html]

• Read the lecture notes from our cloud
computing course at UMD
[http://www.umiacs.umd.edu/~jimmylin/cloud-2010-Spring/]

24

25

Questions?
http://www.qwantz.com/index.php?comic=1491

