
Pycon 2010, Atlanta, Georgia

Jonathan M. Cameron, Ph.D.
Jet Propulsion Laboratory / NASA
California Institute of Technology

Pasadena, California

http://jpl.nasa.gov

 Jet Propulsion Laboratory
 NASA Center focusing on robotic planetary missions

 Mobility and Robotic Systems (http://robotics.jpl.nasa.gov)

 Dartslab creates simulations for robotic vehicles
 Rovers, Airships, spacecraft in space (eg, Cassini),

spacecraft entering a planet’s atmosphere

MSL Rover

MER rover in Victoria crater

http://dartslab.jpl.nasa.gov

Lunar Rovers

 Purposes of vehicle simulations
 Develop and test vehicle control algorithms
 Accurate physics, camera imagery

 Mission planning (or analysis of mission planning)

 Vehicle stand-in simulations for developing/testing flight
software
 High fidelity physics
 Faster than real-time

 Analysis (plotting, multiple simulations for performance
changes to parameter variations)

 Create and test new vehicles simulations
 Develop and test vehicle concepts

 Modular code for wide range of applications
 Many modules for multibody dynamics, vehicle physics,

hardware device models, terrain modeling, camera modeling,
vehicle control, ephemeris, domain specific models, etc

 Mix and match modules for specific problems

 Agile environment to build simulation models quickly
 Script-based language really helps speed customization

 Rapidly evolving code
 New problem areas

 Improving common code modules

 Need to mix and match modules without recompiling everything

 All Dartslab software is C++ & Python

and is organized as independent

modules & libraries.

 Use Python as glue to configure

different applications at run-time

 Use C++ library backend for “heavy-

lifting’, and Python for rapid

prototyping – combines performance

with flexibility.

 Includes support modules for

visualization, large-scale Monte Carlo

parametric simulations, data logging,

introspection, checkpointing etc.

SWIG

Python
Modules

Auto-Generated
Python Bindings

C++
Modules

Custom
Python

 Python interfaces to C++ code using SWIG

 Runtime module loading (via SWIG)

 Connecting C++ code at runtime

 Parameter data management

 User-defined callback routines

 Regression testing

C++
 Computationally expensive algorithms

(eg. multibody dynamics)

 Time critical software

 Foundational classes

 Mature and stable code

 Math libraries

Goal:

Migrate most low-level code / libraries to C++

C++
SWIG

Autogen
C++

Python

Prototype classes

Python
 User interface

 Command line options

 Configuration scripts

 Templates

 Regression test scripts

 GUIs

 Loading parameters

 IPC

 Matlab, Mathematics I/F

 Scripting language (like Tcl, Matlab), but with rich object oriented language and
namespace support

 Python OO implementation schema can be made close to C++ OO software
design for deployment

 Very expressive – software constructs as well as meeting
computational/algorithmic needs

 Easy to import functionality from third party C/C++/Fortran libraries as Python
extensions

 Ideal for prototyping – no compilation needed

 Scales well with software complexity (unlike Tcl or Perl)

 Supports named arguments

 Facilitates “live” implementation of requirements as well as validation
experiments

 Comes with “batteries included” – many extension modules

 Supports command line help, inspection & introspection

 Doxygen can process Python code to generate documentation

 Supports doctests – combines documentation with testing

Tony Hoare/Donald Knuth:

“Premature optimization is

the root of all evil.”

Donald Knuth’s strategy for software development:

1. Get it working

2. Get it right

3. Then optimize

Python has been a very

effective language for

making these transitions

 To flesh out and mature issues related to
 Architecture
 Design
 Requirements
 Usage

 Refactoring existing code

 Working directly in C++ is not a problem for incremental or
modest extensions (if design is clear)

 Large scale extensions, significant refactoring, or new
module development can be more expensive and time
consuming to do directly in C++
 C++ complexity
 Makefiles
 Declarations
 Compiling & linking
 Limited access to mid-level TPS modules, eg. Sockets, XMLRPC, XML etc.

that straddle multiple domains

 Using Python to glue together C++ code at runtime
 Although low-level classes are C++, we use Python classes to

interact with C++ objects. Once connected all interactions are at
full C++ speeds.

 Use Python data (dictionaries) to configure and set up low-level
C++ objects. Once set up, the objects interact with C++
mechanisms; therefore they are faster.

 Reduces need for monolithic complied programs

 Lazy loading of C++ modules/libraries

F3, T3

F2, T2

F1, T1

F4, T4

F5, T5

F6, T6

 Using Python for regression testing
 Use doctests for testing (not PyUnit yet )

 Large regression test suite

 Run regression tests hourly, daily, and with major releases

 Results reporting through Django website

 Reporting
through internal
Django website
 Virtualenv

 “flot” Javascript
library for plotting

 Identifies when
regtests fail

 Helps maintain
large codebase
despite rapid
code evolution

 Good experience with Python

 An important tool in the Dartslab

