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Lunar Rovers

Background

» Jet Propulsion Laboratory
* NASA Center focusing on robotic planetary missions

= Mobility and Robotic Systems (http://robotics.jpl.nasa. gov)

= Dartslab creates simulations for robotic vehicles
= Rovers, Airships, spacecraft in space (eg, Cassini),
spacecraft entering a planet’s atmosphere

http://dartslab.jpl.nasa.gov
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Background

e Purposes of vehicle simulations

* Develop and test vehicle control algorithms
* Accurate physics, camera imagery

* Mission planning (or analysis of mission planning)

* Vehicle stand-in simulations for developing/testing flight
software
* High fidelity physics
* Faster than real-time

* Analysis (plotting, multiple simulations for performance
changes to parameter variations)

= Create and test new vehicles simulations
= Develop and test vehicle concepts



yoftware Architecture Issues

e Modular code for wide range of applications

= Many modules for multibody dynamics, vehicle physics,
hardware device models, terrain modeling, camera modeling,
vehicle control, ephemeris, domain specific models, etc

= Mix and match modules for specific problems

e Agile environment to build simulation models quickly
* Script-based language really helps speed customization

e Rapidly evolving code
- New problem areas
* Improving common code modules
* Need to mix and match modules without recompiling everything



Software Architecture Highlights

e All Dartslab software is C++ & Python
and is organized as independent
modules & libraries.

Python
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How do we use Python?

e Python interfaces to C++ code using SWIG
* Runtime module loading (via SWIG)

e Connecting C++ code at runtime

e Parameter data management

e User-defined callback routines

e Regression testing



C++ & Python Roles within a module

C++ PYthon
» Computationally expensive algorithms e Userinterface
(eg. multibody dynamics) ¢ Command line options

e Time critical software * ConfiguratiGiiSSuiy

: e Templates
e Foundational classes

e Regression test scripts
e Mature and stable code

e GUIs
e Math libraries  Loading parameters

e |PC
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Why Python?

Scripting language (like Tcl, Matlab), but with rich object oriented language and
namespace support

Python OO implementation schema can be made close to C++ OO software
design for deployment

Very expressive — software constructs as well as meeting
computational/algorithmic needs

Easy to import functionality from third party C/C++/Fortran libraries as Python
extensions

|deal for prototyping — no compilation needed
Scales well with software complexity (unlike Tcl or Perl)
Supports named arguments

Facilitates “live” implementation of requirements as well as validation
experiments

Comes with “batteries included” — many extension modules
Supports command line help, inspection & introspection
Doxygen can process Python code to generate documentation
Supports doctests — combines documentation with testing



Developing Software...

Donald Knuth’s strategy for software development:

Get it working
2. Getitright

3. Then optimize

»

)

Python has been a very
effective language for
making these transitions

Tony Hoare/Donald Knuth:
“Premature optimization is
the root of all evil.”




Why Prototype with Python?

To flesh out and mature issues related to
= Architecture

= Design

= Requirements

* Usage

Refactoring existing code

Working directly in C++ is not a problem for incremental or
modest extensions (if design is clear)

Large scale extensions, significant refactoring, or new

module development can be more expensive and time

consuming to do directly in C++

= C++ complexity

= Makefiles

* Declarations

= Compiling & linking

* Limited access to mid-level TPS modules, eg. Sockets, XMLRPC, XML etc.
that straddle multiple domains



Python connects C++ code

e Using Python to glue together C++ code at runtime

* Although low-level classes are C++, we use Python classes to

interact with C++ objects. Once connected all interactions are at
full C++ speeds.

* Use Python data (dictionaries) to configure and set up low-level
C++ objects. Once set up, the objects interact with C++
mechanisms; therefore they are faster.

* Reduces need for monolithic complied programs
- Lazy loading of C++ modules/libraries



Python for regression testing

e Using Python for regression testing
* Use doctests for testing (not PyUnit yet ®)
* Large regression test suite
* Run regression tests hourly, daily, and with major releases
* Results reporting through Django website



Python for regression testing
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Conclusions

e Good experience with Python
e An important tool in the Dartslab



