
Pycon 2010, Atlanta, Georgia

Jonathan M. Cameron, Ph.D.
Jet Propulsion Laboratory / NASA
California Institute of Technology

Pasadena, California

http://jpl.nasa.gov

 Jet Propulsion Laboratory
 NASA Center focusing on robotic planetary missions

 Mobility and Robotic Systems (http://robotics.jpl.nasa.gov)

 Dartslab creates simulations for robotic vehicles
 Rovers, Airships, spacecraft in space (eg, Cassini),

spacecraft entering a planet’s atmosphere

MSL Rover

MER rover in Victoria crater

http://dartslab.jpl.nasa.gov

Lunar Rovers

 Purposes of vehicle simulations
 Develop and test vehicle control algorithms
 Accurate physics, camera imagery

 Mission planning (or analysis of mission planning)

 Vehicle stand-in simulations for developing/testing flight
software
 High fidelity physics
 Faster than real-time

 Analysis (plotting, multiple simulations for performance
changes to parameter variations)

 Create and test new vehicles simulations
 Develop and test vehicle concepts

 Modular code for wide range of applications
 Many modules for multibody dynamics, vehicle physics,

hardware device models, terrain modeling, camera modeling,
vehicle control, ephemeris, domain specific models, etc

 Mix and match modules for specific problems

 Agile environment to build simulation models quickly
 Script-based language really helps speed customization

 Rapidly evolving code
 New problem areas

 Improving common code modules

 Need to mix and match modules without recompiling everything

 All Dartslab software is C++ & Python

and is organized as independent

modules & libraries.

 Use Python as glue to configure

different applications at run-time

 Use C++ library backend for “heavy-

lifting’, and Python for rapid

prototyping – combines performance

with flexibility.

 Includes support modules for

visualization, large-scale Monte Carlo

parametric simulations, data logging,

introspection, checkpointing etc.

SWIG

Python
Modules

Auto-Generated
Python Bindings

C++
Modules

Custom
Python

 Python interfaces to C++ code using SWIG

 Runtime module loading (via SWIG)

 Connecting C++ code at runtime

 Parameter data management

 User-defined callback routines

 Regression testing

C++
 Computationally expensive algorithms

(eg. multibody dynamics)

 Time critical software

 Foundational classes

 Mature and stable code

 Math libraries

Goal:

Migrate most low-level code / libraries to C++

C++
SWIG

Autogen
C++

Python

Prototype classes

Python
 User interface

 Command line options

 Configuration scripts

 Templates

 Regression test scripts

 GUIs

 Loading parameters

 IPC

 Matlab, Mathematics I/F

 Scripting language (like Tcl, Matlab), but with rich object oriented language and
namespace support

 Python OO implementation schema can be made close to C++ OO software
design for deployment

 Very expressive – software constructs as well as meeting
computational/algorithmic needs

 Easy to import functionality from third party C/C++/Fortran libraries as Python
extensions

 Ideal for prototyping – no compilation needed

 Scales well with software complexity (unlike Tcl or Perl)

 Supports named arguments

 Facilitates “live” implementation of requirements as well as validation
experiments

 Comes with “batteries included” – many extension modules

 Supports command line help, inspection & introspection

 Doxygen can process Python code to generate documentation

 Supports doctests – combines documentation with testing

Tony Hoare/Donald Knuth:

“Premature optimization is

the root of all evil.”

Donald Knuth’s strategy for software development:

1. Get it working

2. Get it right

3. Then optimize

Python has been a very

effective language for

making these transitions

 To flesh out and mature issues related to
 Architecture
 Design
 Requirements
 Usage

 Refactoring existing code

 Working directly in C++ is not a problem for incremental or
modest extensions (if design is clear)

 Large scale extensions, significant refactoring, or new
module development can be more expensive and time
consuming to do directly in C++
 C++ complexity
 Makefiles
 Declarations
 Compiling & linking
 Limited access to mid-level TPS modules, eg. Sockets, XMLRPC, XML etc.

that straddle multiple domains

 Using Python to glue together C++ code at runtime
 Although low-level classes are C++, we use Python classes to

interact with C++ objects. Once connected all interactions are at
full C++ speeds.

 Use Python data (dictionaries) to configure and set up low-level
C++ objects. Once set up, the objects interact with C++
mechanisms; therefore they are faster.

 Reduces need for monolithic complied programs

 Lazy loading of C++ modules/libraries

F3, T3

F2, T2

F1, T1

F4, T4

F5, T5

F6, T6

 Using Python for regression testing
 Use doctests for testing (not PyUnit yet)

 Large regression test suite

 Run regression tests hourly, daily, and with major releases

 Results reporting through Django website

 Reporting
through internal
Django website
 Virtualenv

 “flot” Javascript
library for plotting

 Identifies when
regtests fail

 Helps maintain
large codebase
despite rapid
code evolution

 Good experience with Python

 An important tool in the Dartslab

