Using Python to Create
Robotic Simulations for
Planetary Exploration
Pycon 2010, Atlanta, Georgia

Jonathan M. Cameron, Ph.D.
Jet Propulsion Laboratory /| NASA
California Institute of Technology

Pasadena, California

http://jpl.nasa.gov

Lunar Rovers

Background

» Jet Propulsion Laboratory
* NASA Center focusing on robotic planetary missions

= Mobility and Robotic Systems (http://robotics.jpl.nasa. gov)

= Dartslab creates simulations for robotic vehicles
= Rovers, Airships, spacecraft in space (eg, Cassini),
spacecraft entering a planet’s atmosphere

http://dartslab.jpl.nasa.gov

MSL Rover

A Roams Simulation of
Opportunity's Descent into
the Victoria Crater

DARTS Lab
Jet Propulsion Laboratory
August 2007

Background

e Purposes of vehicle simulations

* Develop and test vehicle control algorithms
* Accurate physics, camera imagery

* Mission planning (or analysis of mission planning)

* Vehicle stand-in simulations for developing/testing flight
software
* High fidelity physics
* Faster than real-time

* Analysis (plotting, multiple simulations for performance
changes to parameter variations)

= Create and test new vehicles simulations
= Develop and test vehicle concepts

yoftware Architecture Issues

e Modular code for wide range of applications

= Many modules for multibody dynamics, vehicle physics,
hardware device models, terrain modeling, camera modeling,
vehicle control, ephemeris, domain specific models, etc

= Mix and match modules for specific problems

e Agile environment to build simulation models quickly
* Script-based language really helps speed customization

e Rapidly evolving code
- New problem areas
* Improving common code modules
* Need to mix and match modules without recompiling everything

Software Architecture Highlights

e All Dartslab software is C++ & Python
and is organized as independent
modules & libraries.

Python
\ oG
e Use Python as glue to configure Modules
different applications at run-time f

e Use C++ library backend for “heavy-
lifting’, and Python for rapid
prototyping — combines performance

with flexibility. f Mo

Custom
D71}
C++ —ytnon

Auto-Generated
Python Bindings

 Includes support modules for
visualization, large-scale Monte Carlo
parametric simulations, data logging,
introspection, checkpointing etc.

Modules

How do we use Python?

e Python interfaces to C++ code using SWIG
* Runtime module loading (via SWIG)

e Connecting C++ code at runtime

e Parameter data management

e User-defined callback routines

e Regression testing

C++ & Python Roles within a module

C++ PYthon
» Computationally expensive algorithms e Userinterface
(eg. multibody dynamics) ¢ Command line options

e Time critical software * ConfiguratiGiiSSuiy

: e Templates
e Foundational classes

e Regression test scripts
e Mature and stable code

e GUIs
e Math libraries Loading parameters

e |PC
Goal: e Matlab, Mathematics I/F

Migrate most low-level code/ libraries to C++
SWIG
C++ Autogen Python
C++

Prototype classes J

Why Python?

Scripting language (like Tcl, Matlab), but with rich object oriented language and
namespace support

Python OO implementation schema can be made close to C++ OO software
design for deployment

Very expressive — software constructs as well as meeting
computational/algorithmic needs

Easy to import functionality from third party C/C++/Fortran libraries as Python
extensions

|deal for prototyping — no compilation needed
Scales well with software complexity (unlike Tcl or Perl)
Supports named arguments

Facilitates “live” implementation of requirements as well as validation
experiments

Comes with “batteries included” — many extension modules
Supports command line help, inspection & introspection
Doxygen can process Python code to generate documentation
Supports doctests — combines documentation with testing

Developing Software...

Donald Knuth’s strategy for software development:

Get it working
2. Getitright

3. Then optimize

»

)

Python has been a very
effective language for
making these transitions

Tony Hoare/Donald Knuth:
“Premature optimization is
the root of all evil.”

Why Prototype with Python?

To flesh out and mature issues related to
= Architecture

= Design

= Requirements

* Usage

Refactoring existing code

Working directly in C++ is not a problem for incremental or
modest extensions (if design is clear)

Large scale extensions, significant refactoring, or new

module development can be more expensive and time

consuming to do directly in C++

= C++ complexity

= Makefiles

* Declarations

= Compiling & linking

* Limited access to mid-level TPS modules, eg. Sockets, XMLRPC, XML etc.
that straddle multiple domains

Python connects C++ code

e Using Python to glue together C++ code at runtime

* Although low-level classes are C++, we use Python classes to

interact with C++ objects. Once connected all interactions are at
full C++ speeds.

* Use Python data (dictionaries) to configure and set up low-level
C++ objects. Once set up, the objects interact with C++
mechanisms; therefore they are faster.

* Reduces need for monolithic complied programs
- Lazy loading of C++ modules/libraries

Python for regression testing

e Using Python for regression testing
* Use doctests for testing (not PyUnit yet ®)
* Large regression test suite
* Run regression tests hourly, daily, and with major releases
* Results reporting through Django website

Python for regression testing

e Reporting
th ro Ugh Interna | ROAMSDshellPkg R:gr:ssion Tests
Django Website Recent Summary of Progress - Hourly Regtests

Ld
* Virtualenv
ROAMSDshellPkg-Hourly-2010-02-11-11_02 {Summary) 70

) “fl Ot’, J ava S Cri pt ROAMSDshellPkg-Houry-2010-02-11-10_02 {Summary)
“bra ry for p l Ottlng Daily - Last: Week Month Year ”

ROAMSDshellPkg-2010-02-10-23_00 {Sumrnary) 350
ROAMSDshellPkg-2010-02-09-23_00 (Summary) .

-
o fo .
* ROAMSDshellPkg-2010-02-08-22_00 (Summary)
() I d e l Itlfl e S WI I e l I « ROAMSDshellPkg-2010-02-0722_18 (Summary)
» ROAMSDshellPkg-2010-01-24-22_18 {Summary) =2
.
.
.

Plot: All 24Hours 48Hours 72Hours Hourly{all) Daily Release

Hourly - Last: 48Hrs 72Hrs Week Month Year

ROAMSDshellPlg-Hourly-2010-02-11-17_02 {Summary)
ROAMSDshellPkg-Hourly-2010-02-11-16_02 (Summary) 30
ROAMSDshellPkg-Hourly-2010-02-11-15_02 {Summary)
ROAMSDshellPkg-Hourly-2010-02-11-14_02 {Summary)
ROAMSDshellPkg-Hourly-2010-02-11-13_02 {Summary) &
ROAMSDshellPkg-Hourly-2010-02-11-12_02 {Summary)

ROAMSDshellPkg-2010-01-23-22_18 {Summary)

ROAMSDshellPkg-2010-01-22-22_18 {Summary) 20

o
re gt e S t S fa I I ROAMSDshellPkg-2010-01-21-22_18 {Summary)

Release - Last: Week Month Year

=]

ROAMSDshellPkg-R1-26r-2010-01-22 {Summary)

ROAMSDshellPkg-R1-25¢-2010-01-15 {Summary)
ROAMSDshellPkg-R1-25p-2010-01-10 {Summary)
ROAMSDshellPkg-R1-250-2010-01-06 {Summary)
ROAMSDshellPlkg-R1-26n-2010-01-01 {Summary}
ROAMSDshellPkg-R1-25m-2009-12-16 (Summary)
ROAMSDshellPkg-R1-25k-2009-12-03 {Summary)
ROAMSDshellPkg-R1-25[-2009-11-26 (Summary)

e Helps maintain
large codebase

Darts Lab Copyright ® 2009

despite rapid
code evolution

Conclusions

e Good experience with Python
e An important tool in the Dartslab

