
June 10, 2010 PyCon Asia Pacific 2010 1

A Case Study of Python and 
“No-Sql” Databases

Mozilla Raindrop and CouchDB

Mark Hammond



June 10, 2010 PyCon Asia Pacific 2010 2

About Me

● Core Python committer.
● Primary developer and maintainer for the 

pywin32 package.
● Based in Melbourne, Australia.
● Currently working for Mozilla Messaging 

on Raindrop.



June 10, 2010 PyCon Asia Pacific 2010 3

No-Sql Databases?

● Name is a misnomer
– Some could use SQL if they wanted

● But would be slow for many SQL 
operations – eg, joins

– Tend to not be relational
– Trade immediate consistency for 

scalability
● Use terms like 'eventual consistency'
● Push some concerns back to application 

code

● Designed for distributed scalability



June 10, 2010 PyCon Asia Pacific 2010 4

Glorified key-value stores

● Sometimes 'document' oriented
● No central schema or validation
● No referential integrity

– Almost impossible in a distributed system 
anyway.

– App must manage this.



June 10, 2010 PyCon Asia Pacific 2010 5

Map-Reduce

● Often use a variation of map-reduce to 
process data

– Map phase calculates data for a single 
entity

● Eg, single “document” or record.

– Reduce summarizes or aggregates 
individual “map” results

● Particularly suitable for distributed 
processing

– Can give different “chunks” to different 
nodes.

● All map-reduce engines are not created 
equal

– Different semantics allow for quite 
different use-cases.



June 10, 2010 PyCon Asia Pacific 2010 6

No-Sql implementations

● Hot new topic in the database world
● Many contenders

– CouchDB
– MongoDB
– Google Bigtable
– Cassandra
– RIAK

● Each has different use-cases – choose 
carefully.



June 10, 2010 PyCon Asia Pacific 2010 7

CouchDB

● Document oriented, schema-less
● Uses HTTP for the API

– Use GET to fetch documents
– PUT to save new documents
– Eliminates requirement for bindings

● Any HTTP client can talk to CouchDB

– But bindings exist anyway!
● Usually with convenience functions
● Often more trouble than they are worth



June 10, 2010 PyCon Asia Pacific 2010 8

JSON Oriented

● Uses JSON over HTTP for fetching and 
saving documents.

● Documents are persisted on disk using a 
simple JSON persistence mechanism.

– “Attachments” used for BLOBS.

● Views, externals and all other features 
based on JSON.

● Python has excellent JSON support.



June 10, 2010 PyCon Asia Pacific 2010 9

JavaScript view engine

● Views are defined using Javascript.
– Map and reduce functions are Javascript 

functions.
– CouchDB itself written in erlang

● View engines available for many other 
languages, including Python.

– But views must be 'referentially 
transparent', so you can't use all its 
power.



June 10, 2010 PyCon Asia Pacific 2010 10

Pre-built View/Query system

● Documents passed through a map 
function and result saved.

– Extremely fast queries for existing 
documents.

– Updated upon view request rather than 
as documents added

– Fairly slow queries with many new 
documents – all must be passed though 
map function

● But fast after that!

● Reduce may require per-query 
processing



June 10, 2010 PyCon Asia Pacific 2010 11

CouchDB – Robust Storage

● Uses “append-only” operations for data 
integrity

– Chews disk-space until explicit 
compaction

● Uses “crash-only” server termination
– No real “shutdown” process – server just 

stops.
– If you have to handle your server 

crashing, why not make that the 
default?



June 10, 2010 PyCon Asia Pacific 2010 12

CouchDB – Builtin Replication

● Master-master replication built-in to 
initial design.

● Deceptively simple process
– 'Change sequence' numbers with md5 

hash of document body.
– Replication remembers last sequence and 

restarts from there.



June 10, 2010 PyCon Asia Pacific 2010 13

Conflicts handled by 
Application

● Any distributed system introduces 
possibility for conflicts

● CouchDB detects conflicts
– Retains all conflicting versions
– Arbitrary conflicting version used while 

unresolved.

● Application implements resolution of 
conflicts

– Only the application knows how to handle 
this



June 10, 2010 PyCon Asia Pacific 2010 14

Attachments

● Documents can have any number of 
binary attachments.

● Attachments individually addressable.
● Combined with HTTP API, CouchDB 

trivially hosts web-apps
– HTML, Javascript, CSS etc all suitable 

for attachments.



June 10, 2010 PyCon Asia Pacific 2010 15

Mozilla Raindrop

● Mozilla Messaging
– Who brings you Thunderbird

● Experiment in the future of messaging 
applications

– Web based
– Suitable for mobile devices.

● Currently using CouchDB for storage 
and for hosting Javascript front-end 
code.



June 10, 2010 PyCon Asia Pacific 2010 16

Python in the back-end

● Talking to IMAP, Twitter, Skype, 
parsing mime, etc

● Stores documents in the DB for later 
consumption by the front-end

● Implements the runtime REST API
– CouchDB arranges to start a Python 

process on demand.

● May move away from CouchDB



June 10, 2010 PyCon Asia Pacific 2010 17

Experiences

● To be fair, not yet 1.0
● Append-only model causes huge disk 

usage
– Can be compacted, but this is very IO 

intensive.
– Best for databases with few writes 

relative to reads.

● View model is inflexible
– Map can only see one document – if data 

spans 2 documents you are screwed.
– Adding new views has a huge cost in 

large databases
● Huge CPU load, large time with view 

unavailable.



June 10, 2010 PyCon Asia Pacific 2010 18

Scalability we don't need

● Capable of scaling and multi-master 
writing

– But raindrop doesn't need that!
– Personal email doesn't need thousands of 

people hitting the same database.

● Cost-per-user is the scalability we 
require

– End-user will not be paying.
– Number of cents per user per year 

matters.



June 10, 2010 PyCon Asia Pacific 2010 19

Massive data redundancy

● Data is heavily denormalized to work 
around lack of joins

– Often create “summary documents” with 
100% redundant data

● Further contributes to performance 
issues.

– Extra documents and multiple 
modifications impacts disk usage.

– Extra document indexing impacts CPU 
performance.



June 10, 2010 PyCon Asia Pacific 2010 20

Cost-effective hosting 
challenges

● Difficult to load-balance CPU and Disk 
intensive tasks

– View-indexing and compaction suck 
performance, but hard to run on other 
nodes.

● Replication requires view reindexing
– Replicated database effectively unusable 

while this happens

● Supporting many users per node seems 
unachievable

– Closer to “how many nodes per user” 
than “how many users per node”



June 10, 2010 PyCon Asia Pacific 2010 21

Summary

● No-Sql is the hot new kid on the block
● Python has bindings for many No-Sql 

databases
– But also for many traditional databases – 

choose what is right for you.

● Research various implementation 
strengths and weaknesses.

– Various tradeoffs to be made between 
reliability and performance.

– No magic bullet.



June 10, 2010 PyCon Asia Pacific 2010 22

Summary (cont.)

● Don't over think your scalability 
requirements

– Everyone wants to scale as if they they 
are building the next twitter

– But twitter evolved that scalability
– Worry more about that problem when you 

actually have it!

● Design for fast iteration
– Give yourself the ability to respond to 

changes in requirements and knowledge
– Eg, Python!



June 10, 2010 PyCon Asia Pacific 2010 23

Questions?

● Any questions?
● Contact

– mhammond@skippinet.com.au

● Thanks for coming!

mailto:mhammond@skippinet.com.au

	Title
	页 2
	页 3
	页 4
	页 5
	页 6
	页 7
	页 8
	页 9
	页 10
	页 11
	页 12
	页 13
	页 14
	页 15
	页 16
	页 17
	页 18
	页 19
	页 20
	页 21
	页 22
	页 23

