
Python on Windows

Mark Hammond

June 11, 2010 PyCon Asia Pacific 2010 2

About Me

● Primary developer and maintainer for the
pywin32 package.

– Started in about 1993

● Primary author of Python Programming
on Win32

● Co-author of Programming in the .NET
environment.

● Core Python committer
● Currently working for Mozilla Messaging

June 11, 2010 PyCon Asia Pacific 2010 3

Why not stick to cross-platform
code?

Python has rich cross-platform support -
why target Windows specific features?
● Provide good experience for

administrators.
● Provide good experience for users.
● Integrate with other languages and

development environments.

Provide a good experience for
administrators

● Secure your network connections with
NTLM/Kerberos

● Integrate with existing user roles -
admins use Windows tools to grant
access

● Implement 'daemon' style programs to
run as a service to give administrators a
single control point.

● Integrate with performance monitoring
etc.

● Support local policies
– Users can't always download and install

random executables.

Provide a good experience for
users

● Single-signon for convenience (if not
security!)

● Use native widgets for navigating the
file-system and shell namespace

● Leverage metadata stored in files
● Access printers, network resources, USB

devices, detect device removal/insertion,
etc

Integrate with development
tools

● Some shops have standardized on
Windows, not Python

● Use Visual Studio as a development
environment.

● Write reusable components for use in
languages other than Python

● Consume reusable components written in
languages other than Python

The 2 faces of Python on
Windows

● "Classic" Python
– A Win32 environment
– Implemented in C

● IronPython
– Runs in the .NET 'managed' environment
– Implemented in CSharp

June 11, 2010 PyCon Asia Pacific 2010 8

CPython on Windows

● Python has first-class support for
Windows

– Eg: Unicode APIs are used to offer
seamless Unicode experience.

– Registry used to configure sys.path etc

● Tends to avoid platform-specific
functionality:

– Native windows functions are used to
create a cross-platform environment

June 11, 2010 PyCon Asia Pacific 2010 9

Directly exposed features

● Not much Windows specific functionality
is exposed

– ctypes or pywin32 is often used to fill in
the gaps

● In some cases, Windows features are
directly exposed for fundamental
application requirements

– Access the windows registry
– os.startfile() to open files based on file

extensions
– Distutils supports Windows specific

installations
– etc.

June 11, 2010 PyCon Asia Pacific 2010 10

Windows Integration Options

● ctypes
● Python for Windows extensions
● IronPython

June 11, 2010 PyCon Asia Pacific 2010 11

Python for Windows Extensions

● The pywin32 extensions expose Windows
specific features

● Broad coverage of many aspects; native
IO, services, networking, COM, UI, etc

● Stable and mature
● Downsides

– fairly large,
– not easy_install-able
– A fair bit of C/C++

June 11, 2010 PyCon Asia Pacific 2010 12

Broad Coverage

● Use COM objects from Python
● Write COM objects in Python
● Windows Shell integration
● Write Windows services
● Integrate with performance and event

logging tools
● Access many Low-level APIs, IIS, etc
● Supports Python 2.x and 3.x

June 11, 2010 PyCon Asia Pacific 2010 13

Basis for other toolkits

● Tim Golden's Windows Management
Instrumentation (WMI) module

● Vernon Cole's adodbapi
– standard dbapi to access Windows ADO

components

● Mark Rees's ISAPI-WSGI
– Python WSGI standard API running on IIS

● Used by other toolkits
– twisted, mercurial, bzr etc all take

advantage of pywin32 if found.

June 11, 2010 PyCon Asia Pacific 2010 14

IronPython

● Python in the .NET environment.
● Lets us use our favourite language

with .NET!
● But what exactly is .NET?

June 11, 2010 PyCon Asia Pacific 2010 15

History of .NET:

● Microsoft had COM and ActiveX which
provided good cross-language
integration.

– A COM object could be implemented in
one language and called from another
with relative ease.

– COM provided "type information" so you
could introspect available functions and
the parameters they require.

June 11, 2010 PyCon Asia Pacific 2010 16

History of .NET – beyond COM

COM worked well but had a number of
problems:
● Largely defined around C++ concepts -

support for dynamic languages was
"bolted on" later.

● Could not avoid a buggy COM object
from crashing your program.

● Could not avoid a malicious program
from doing evil things.

● A real problem when trying to marry
COM with the untrusted internet.

June 11, 2010 PyCon Asia Pacific 2010 17

.NET is born

● Microsoft decided COM couldn't evolve
any further - revolution was needed!

● Research on Virtual Machine technology
- particularly Java - offers promise.

● For largely political reasons (including
Sun's reluctance to embrace languages
other than Java on their VM), Microsoft
research started building their own.

June 11, 2010 PyCon Asia Pacific 2010 18

So what is .NET?

● A "managed" virtual machine
environment.

● Programs compiled to .NET byte-code
instead of native machine-language (eg,
CPython) or custom byte-code (eg,
Python programs).

● But fast JIT compilers means things
usually are native when it matters

June 11, 2010 PyCon Asia Pacific 2010 19

A safety .NET

● Environment manages "safety" of
programs:

● Prevents accidental errors such as
invalid memory references.

● Prevents malicious code by enforcing
access control.

– Think restricted environments such as
your browser (eg, Silverlight)

June 11, 2010 PyCon Asia Pacific 2010 20

Why use .NET?

● Windows itself is still largely
"unmanaged" code

– ie, you can integrate with Windows
without .NET

● .NET interoperates with “legacy”
systems, such as COM

● So why bother with .NET?

June 11, 2010 PyCon Asia Pacific 2010 21

Why use .NET?

● The future of Windows?
● Integration with CSharp, VB.NET etc.
● Single development environment across

all languages
– Common debugger, step across language

boundaries seamlessly.

● Ability to run in untrusted environments.
● Extensive library

June 11, 2010 PyCon Asia Pacific 2010 22

.NET library

● Goes way beyond simply wrapping the
Windows API.

● Extensive
– Common cross-language GUI toolkit
– Security, signature management, XML,

databases, etc

● Stable
– Part of .NET, so not maintained by each

individual language.

June 11, 2010 PyCon Asia Pacific 2010 23

Getting in on the action?

● Q) So how do I get some of this action
while still using Python?

● A) IronPython!

June 11, 2010 PyCon Asia Pacific 2010 24

IronPython

● A Python .NET implementation.
● Not a 'layer' or 'shim' around CPython - a

new implementation written in CSharp.
● A first-class .NET citizen - no

compromises!
● No real integration with CPython - that's

the point!

June 11, 2010 PyCon Asia Pacific 2010 25

IronPython history

● Started by Jim Hugunin in his spare time,
but Microsoft liked it so much they took
him and a team on.

– No coincidence this sounds a lot like the
history of Jython!

● Active community has evolved
● Books, websites, etc.

June 11, 2010 PyCon Asia Pacific 2010 26

OpenSource friendly

● Released under a Microsoft Public
License.

– Certified by the OSI as meeting “open
source” requirements.

● Works on Mono, an alternative .NET
implementation.

● A 'community' version called Fepy is also
available

– Iron->Fe – geddit?

June 11, 2010 PyCon Asia Pacific 2010 27

IronPython – Python
compatible?

● Yes and No.
– Language == Yes, environment == No

● Extension modules built for CPython
don't work on IronPython.

– IronPython has reimplements most
extension modules from the stdlib.

● Tracks recent Python versions
– Supports Python 2.6
– Python 3.x is planned.

June 11, 2010 PyCon Asia Pacific 2010 28

Why IronPython?

● Most Microsoft languages are statically
typed

– Not that there's anything wrong with
that.

● IronPython appeals on .NET for the same
reason Python appeals everywhere!

– Simple built-in types
– Interactive, supports introspection
– etc.

June 11, 2010 PyCon Asia Pacific 2010 29

IronPython introspection

● IronPython presents the same interactive
session as CPython

IronPython 2.6.1 (2.6.10920.0) on .NET
2.0.50727.4927
Type "help", "copyright", "credits" or
"license" for more information.
>>>

● Import any .NET namespace and peek
inside.

>>> import System.Collections
>>> dir(System.Collections)
['ArrayList', 'BitArray',...]
>>>

June 11, 2010 PyCon Asia Pacific 2010 30

IronPython introspection

● Create and introspect objects
>>> a=System.Collections.ArrayList()
>>> dir(a)
['Adapter', 'Add', …]
>>> a.Add("Hello")
0
>>> a.ToArray()
Array[object](('Hello'))
>>>

● This object is a native .NET object.

June 11, 2010 PyCon Asia Pacific 2010 31

IronPython Tools

● Not many IronPython specific tools –
.NET tools generally work!

● IronPython addon for Visual Studio
– Provides syntax coloring, auto-complete,

code browsers etc.

● Full debugger support
– Full debugging of IronPython

applications.
– Seamless transitions between

implementation languages.

June 11, 2010 PyCon Asia Pacific 2010 32

Silverlight

● Development platform and environment
for 'webby' .NET applications.

● Designed for web apps and mobile
devices.

● Desktop applications can also be built
– Think 'a slimmed down .NET

environment'

● Has plugins for IE and Firefox
● Microsoft pushing Silverlight hard

June 11, 2010 PyCon Asia Pacific 2010 33

IronPython and Silverlight

● IronPython in the browser
– Use Python in the browser as well as the

server
– Avoid JavaScript!

● Obvious downside is requirement for
Silverlight

– Particularly useful for corporate intranets
where silverlight can be mandated.

– Less useful for public sites wanting to
stick with web standards.

– Microsoft hoping to make Silverlight as
ubiquitous as Flash!

June 11, 2010 PyCon Asia Pacific 2010 34

Silverlight Security Model

● .NET and Silverlight implement a sand-
box.

● Silverlight allows you to control the level
of trust you apply to applications.

● .NET runtime prevents applications from
doing what is allowed.

● No need to trust each individual
application/language but instead trust
the runtime.

June 11, 2010 PyCon Asia Pacific 2010 35

Summary

● Python on Windows goes from strength
to strength

– Works well with the old world order
– Works well with the new world order

● IronPython being directly supported by
Microsoft bodes well for its future.

June 11, 2010 PyCon Asia Pacific 2010 36

Questions?

● Any questions?
● Contact

– mhammond@skippinet.com.au

● Thanks for coming!

	页 1
	页 2
	页 3
	页 4
	页 5
	页 6
	页 7
	页 8
	页 9
	页 10
	页 11
	页 12
	页 13
	页 14
	页 15
	页 16
	页 17
	页 18
	页 19
	页 20
	页 21
	页 22
	页 23
	页 24
	页 25
	页 26
	页 27
	页 28
	页 29
	页 30
	页 31
	页 32
	页 33
	页 34
	页 35
	页 36

