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About Me

● Primary developer and maintainer for the 
pywin32 package.

– Started in about 1993

● Primary author of Python Programming 
on Win32

● Co-author of Programming in the .NET 
environment.

● Core Python committer
● Currently working for Mozilla Messaging
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Why not stick to cross-platform 
code?

Python has rich cross-platform support - 
why target Windows specific features?
● Provide good experience for 

administrators.
● Provide good experience for users.
● Integrate with other languages and 

development environments.



  

Provide a good experience for 
administrators

● Secure your network connections with 
NTLM/Kerberos

● Integrate with existing user roles - 
admins use Windows tools to grant 
access

● Implement 'daemon' style programs to 
run as a service to give administrators a 
single control point.

● Integrate with performance monitoring 
etc.

● Support local policies
– Users can't always download and install 

random executables.



  

Provide a good experience for 
users

● Single-signon for convenience (if not 
security!)

● Use native widgets for navigating the 
file-system and shell namespace

● Leverage metadata stored in files
● Access printers, network resources, USB 

devices, detect device removal/insertion, 
etc



  

Integrate with development 
tools

● Some shops have standardized on 
Windows, not Python

● Use Visual Studio as a development 
environment.

● Write reusable components for use in 
languages other than Python

● Consume reusable components written in 
languages other than Python



  

The 2 faces of Python on 
Windows

● "Classic" Python
– A Win32 environment
– Implemented in C

● IronPython
– Runs in the .NET 'managed' environment
– Implemented in CSharp
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CPython on Windows

● Python has first-class support for 
Windows

– Eg: Unicode APIs are used to offer 
seamless Unicode experience.

– Registry used to configure sys.path etc

● Tends to avoid platform-specific 
functionality:

– Native windows functions are used to 
create a cross-platform environment
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Directly exposed features

● Not much Windows specific functionality 
is exposed

– ctypes or pywin32 is often used to fill in 
the gaps

● In some cases, Windows features are 
directly exposed for fundamental 
application requirements

– Access the windows registry
– os.startfile() to open files based on file 

extensions
– Distutils supports Windows specific 

installations
– etc.
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Windows Integration Options

● ctypes
● Python for Windows extensions
● IronPython
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Python for Windows Extensions

● The pywin32 extensions expose Windows 
specific features

● Broad coverage of many aspects; native 
IO, services, networking, COM, UI, etc

● Stable and mature
● Downsides

– fairly large, 
– not easy_install-able
– A fair bit of C/C++
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Broad Coverage

● Use COM objects from Python
● Write COM objects in Python
● Windows Shell integration
● Write Windows services
● Integrate with performance and event 

logging tools
● Access many Low-level APIs, IIS, etc
● Supports Python 2.x and 3.x
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Basis for other toolkits

● Tim Golden's Windows Management 
Instrumentation (WMI) module

● Vernon Cole's adodbapi
– standard dbapi to access Windows ADO 

components

● Mark Rees's ISAPI-WSGI
– Python WSGI standard API running on IIS

● Used by other toolkits
– twisted, mercurial, bzr etc all take 

advantage of pywin32 if found.
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IronPython

● Python in the .NET environment.
● Lets us use our favourite language 

with .NET!
● But what exactly is .NET?
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History of .NET:

● Microsoft had COM and ActiveX  which 
provided good cross-language 
integration.

– A COM object could be implemented in 
one language and called from another 
with relative ease.

– COM provided "type information" so you 
could introspect available functions and 
the parameters they require.
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History of .NET – beyond COM

COM worked well but had a number of 
problems:
● Largely defined around C++ concepts - 

support for dynamic languages was 
"bolted on" later.

● Could not avoid a buggy COM object 
from crashing your program.

● Could not avoid a malicious program 
from doing evil things.

● A real problem when trying to marry 
COM with the untrusted internet.
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.NET is born

● Microsoft decided COM couldn't evolve 
any further - revolution was needed!

● Research on Virtual Machine technology 
- particularly Java - offers promise.

● For largely political reasons (including 
Sun's reluctance to embrace languages 
other than Java on their VM), Microsoft 
research started building their own.
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So what is .NET?

● A "managed" virtual machine 
environment.

● Programs compiled to .NET byte-code 
instead of native machine-language (eg, 
CPython) or custom byte-code (eg, 
Python programs).

● But fast JIT compilers means things 
usually are native when it matters
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A safety .NET

● Environment manages "safety" of 
programs:

● Prevents accidental errors such as 
invalid memory references.

● Prevents malicious code by enforcing 
access control.

– Think restricted environments such as 
your browser (eg, Silverlight)
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Why use .NET?

● Windows itself is still largely 
"unmanaged" code

– ie, you can integrate with Windows 
without .NET

● .NET interoperates with “legacy” 
systems, such as COM

● So why bother with .NET?
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Why use .NET?

● The future of Windows?
● Integration with CSharp, VB.NET etc.
● Single development environment across 

all languages
– Common debugger, step across language 

boundaries seamlessly.

● Ability to run in untrusted environments.
● Extensive library
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.NET library

● Goes way beyond simply wrapping the 
Windows API.

● Extensive
– Common cross-language GUI toolkit
– Security, signature management, XML, 

databases, etc

● Stable
– Part of .NET, so not maintained by each 

individual language.
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Getting in on the action?

● Q) So how do I get some of this action 
while still using Python?

● A) IronPython!
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IronPython

● A Python .NET implementation.
● Not a 'layer' or 'shim' around CPython - a 

new implementation written in CSharp.
● A first-class .NET citizen - no 

compromises!
● No real integration with CPython - that's 

the point!
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IronPython history

● Started by Jim Hugunin in his spare time, 
but Microsoft liked it so much they took 
him and a team on.

– No coincidence this sounds a lot like the 
history of Jython!

● Active community has evolved
● Books, websites, etc.
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OpenSource friendly

● Released under a Microsoft Public 
License.

– Certified by the OSI as meeting “open 
source” requirements.

● Works on Mono, an alternative .NET 
implementation.

● A 'community' version called Fepy is also 
available 

– Iron->Fe – geddit?
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IronPython – Python 
compatible?

● Yes and No.
– Language == Yes, environment == No

● Extension modules built for CPython 
don't work on IronPython.

– IronPython has reimplements most 
extension modules from the stdlib.

● Tracks recent Python versions
– Supports Python 2.6
– Python 3.x is planned.
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Why IronPython?

● Most Microsoft languages are statically 
typed

– Not that there's anything wrong with 
that.

● IronPython appeals on .NET for the same 
reason Python appeals everywhere!

– Simple built-in types
– Interactive, supports introspection
– etc.
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IronPython introspection

● IronPython presents the same interactive 
session as CPython

IronPython 2.6.1 (2.6.10920.0) on .NET 
2.0.50727.4927
Type "help", "copyright", "credits" or 
"license" for more information.
>>>

● Import any .NET namespace and peek 
inside.

>>> import System.Collections
>>> dir(System.Collections)
['ArrayList', 'BitArray',...]
>>>
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IronPython introspection

● Create and introspect objects
>>> a=System.Collections.ArrayList()
>>> dir(a)
['Adapter', 'Add', …]
>>> a.Add("Hello")
0
>>> a.ToArray()
Array[object](('Hello'))
>>>

● This object is a native .NET object.
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IronPython Tools

● Not many IronPython specific tools – 
.NET tools generally work!

● IronPython addon for Visual Studio
– Provides syntax coloring, auto-complete, 

code browsers etc.

● Full debugger support
– Full debugging of IronPython 

applications.
– Seamless transitions between 

implementation languages.
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Silverlight

● Development platform and environment 
for 'webby' .NET applications.

● Designed for web apps and mobile 
devices.

● Desktop applications can also be built
– Think 'a slimmed down .NET 

environment'

● Has plugins for IE and Firefox
● Microsoft pushing Silverlight hard
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IronPython and Silverlight

● IronPython in the browser
– Use Python in the browser as well as the 

server
– Avoid JavaScript!

● Obvious downside is requirement for 
Silverlight

– Particularly useful for corporate intranets 
where silverlight can be mandated.

– Less useful for public sites wanting to 
stick with web standards.

– Microsoft hoping to make Silverlight as 
ubiquitous as Flash!
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Silverlight Security Model

● .NET and Silverlight implement a sand-
box.

● Silverlight allows you to control the level 
of trust you apply to applications.

● .NET runtime prevents applications from 
doing what is allowed.

● No need to trust each individual 
application/language but instead trust 
the runtime.
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Summary

● Python on Windows goes from strength 
to strength

– Works well with the old world order
– Works well with the new world order

● IronPython being directly supported by 
Microsoft bodes well for its future.
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Questions?

● Any questions?
● Contact

– mhammond@skippinet.com.au

● Thanks for coming!
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