
Face Detection Using
OpenCV with Python

Linus Neo and Morgan Heijdemann
11.10am-11.50am 10/6/2010 APAC PyCON @ RM 2.2

introduction

Linus : Ahw bugger, I have
to do national service
during APAC PyCon !

Morgan : then you can’t
present your python paper !

introduction

Linus:
Can you do the
take in my name ?

Morgan:
Sure. We’ll miss you

introduction

OpenCV (Open Source Computer Vision) is a library containing real

time computer vision functions.

It is used for facial tracking and for users to take picture of their

faces to view for real time (gaming) purposes.

Early this year version 2 became stable and version 2.1 came out April
2010.

This talk is based on OpenCV_1.1pre1a and python-2.5.4 and PIL
1.1.7 and psyco .
You can download the ppt, installables and demo code at
http://noxqs.com/files/opencv.zip

http://sourceforge.net/projects/opencvlibrary/files/opencv-win/1.1pre1/OpenCV_1.1pre1a.exe/download
http://www.python.org/ftp/python/2.5.4/python-2.5.4.msi
http://www.python.org/ftp/python/2.5.4/python-2.5.4.msi
http://www.python.org/ftp/python/2.5.4/python-2.5.4.msi
http://effbot.org/downloads/PIL-1.1.7.win32-py2.5.exe
http://effbot.org/downloads/PIL-1.1.7.win32-py2.5.exe
http://downloads.sourceforge.net/project/psyco/psyco/1.6/psyco-1.6.win32-py25.exe?use_mirror=biznetnetworks

introduction

2

1
3

4

5

6 SERVER

the imports

Import the necessary library from openCV and also

from openCV’s gui

import the necessary libraries for OpenCV
from opencv import cv
from opencv import highgui
from opencv.cv import *
from opencv.highgui import *

OpenCV’s HighGui

OpenCV consisted of it’s own graphical user interface

for use in full-scale applications.

It can be used within functionally rich UI frameworks

(such as Qt, WinForms or Cocoa) or without any UI at

all.

Sometimes there is a need to try some functionality

quickly and visualize the results.

OpenCV

It provides easy interface to :

• create and manipulate windows that can display

images and "remember" their content (no need to handle

repaint events from OS.

• add track bars to the windows, handle simple mouse

events as well as keyboard commands

• read and write images to/from disk or memory.

• read video from camera or file and write video to a file.

introduction

In our case, the highgui is to provide user input to take

a picture and sending it to the syncing it with other

clients via SVN in the back-end. It also allow users to

view their facial features being recognized and showing

video frames captured by the camera.

Init video

Initialize video capturing from camera and try to open

the capture device

CvCapture

cvCreateCameraCapture

Function

The function cvCreateCameraCapture allocates and initialized

the CvCapture structure for reading a video stream from the

camera. Currently two camera interfaces can be used on

Windows: Video for Windows (VFW) and Matrox Imaging Library

(MIL); and two on Linux: V4L and FireWire (IEEE1394).

CvCapture* cvCreateCameraCapture(int index);

index

Index of the camera to be used. If there is only one camera or it

does not matter what camera to use -1 may be passed.

capture = highgui. cvCreateCameraCapture (0)

CvCapture

cvCreateFileCapture

Function

The function cvCreateFileCapture allocates and initialized the

CvCapture structure for reading the video stream from the

specified file.

CvCapture* cvCreateFileCapture(const char* filename);

filename

Name of the video file.

Filename can also be past through the command line if

argument exist on the command line.

capture = highgui. cvCreateFileCapture (sys.argv[1])

HighGUI

cvNamedWindow

Function

This function creates a window to show images and trackbars, images can be form of

frames captured by the camera. Created windows is referred by their names.

int cvNamedWindow(const char* name, int flags=CV_WINDOW_AUTOSIZE);

name : Name of the window which is used as window identifier and appears in the

window caption.

flags : Flags of the window. Currently the only supported flag is

CV_WINDOW_AUTOSIZE. If it is set, window size is automatically adjusted to fit the

displayed image.

Created windows can be resized using the cvResizeWindow function,

void cvResizeWindow(const char* name, int width, int height);

where the parameters are the name of the created window, width and height of the

window.

Main Loop

The main loop is responsible for the application to

constantly use the frame taken by the camera and

show it on the window. It is also used to handle events

for key pressed for taking picture and also leaving the

application.

Function consist in a main loop to create a basic

window that shows captured frame

while 1:
#capture the current image
frame = highgui.cvQueryFrame(capture)
#handle event, wait for user key input
events = highgui.cvWaitKey(10)
display the frames to have a visual output
highgui.cvShowImage('Camera', frame)

At this point, starting the application will allow user to

see the frame being captured and rendering it onto the

screen(window).

Main Loop

Facial Tracking

In the main loop, there is a function which capture and

return frame (cvQueryFrame) and another function

which display the frames(cvShowImage). After the

camera capture a frame and before displaying it, we

can apply some functions on the captured frame such
as facial tracking

To do this, you need a HAAR cascade(xml files) which

are digital image features used in object recognition.

This feature set considers rectangular regions of the

image and sums up the pixels in this region. This sum

is used to categorize images. HAAR cascade can be

created or found in the internet.

Facial Tracking

implementation

allocate temporary images
gray = cvCreateImage(cvSize(img.width,img.height), 8, 1)
small_img = cvCreateImage(

cvSize(cvRound (img.width/self.image_scale),
cvRound (img.height/self.image_scale)), 8, 1

)

convert color input image to grayscale
cvCvtColor(img, gray, CV_BGR2GRAY)

scale input image for faster processing
cvResize(gray, small_img, CV_INTER_LINEAR)

Bounding box

From all the received faces, create two CV points for

each bounding box of face.

This will return a cv point object that consist of 2 points

for each x and y.

The code below change the cvPoint into string so that

the value can be extracted with String.split() function.

The point are extracted so that PIL will know where to

crop.

Finding the boundingbox

After that draw a rectangle on the frame to show the location of

the face from the two cv Points given.

if faces:
for face_rect in faces:

the input to cvHaarDetectObjects was resized, so scale
the bounding box of each face and convert it to two
CvPoints
pt1=cvPoint(int(face_rect.x*self.image_scale),

int(face_rect.y*self.image_scale))

pt2=cvPoint(int((face_rect.x+face_rect.width)*
self.image_scale),
int((face_rect.y+face_rect.height)*self.image_scale))

Drawing box

#extract each point of the box using split function
ptt1 = str(pt1).split(' ')
ptt2 = str(pt2).split(' ')
p1 = ptt1[0].split('[')
p2 = ptt1[1].split(']')
p3 = ptt2[0].split('[')
p4 = ptt2[1].split(']')

#draw a rectangle for the 2 cvPoint
cvRectangle(img, pt1, pt2, CV_RGB(255,0,0), 3, 8, 0)

OpenCV with PIL(Python

Image Library)

In the digibanner, when the user input the key to take a

picture, a new picture will be created showing image of

a cropped face using facial tracking mapped onto a

bubble. The way digibanner is done is it made use of

PIL(Python Image Library) to crop, paste and save.

introduction

When the input key is pressed, the highGUI will save a

.png image of the last frame taken from the camera.

After saving, PIL will reopen the picture and crop the

points given from the facial tracking.

Using PIL to open the picture of the bubble and

resizing the cropped face to match the bubble. Map the

face to the bubble and save it to a bubble folder, the

name of the created picture will be “bubbles%s.png”

where %s = total number of pictures already created

inside the folder.

introduction

Crop face from picture and map it onto a bubble:
save the last frame when user input the key to take a
picture
highgui.cvSaveImage("lastFrame.png", frame)

#open the last frame using PIL library
captured_face = Image.open("lastFrame.png")

#crop the face using the points from the facial tracking
and pass it into a variable
captured_face=captured_face.crop((pt1, pt2, pt3, pt4))

introduction

resize the cropped face, map it onto a bubble picture and finally save it into

the bubble folder

final_face = captured_face.resize((160, 160))

bubble_img = Image.open("bubble.png")

bubble_img.paste(final_face, (45, 45))

bubble_img.save("bubbles/bubbles%s.png"%(

len(os.listdir(os.getcwd()+"/bubbles"))

))

PIL Image crop function

This function returns a rectangular region from the

current image.

im.crop(box)

box

The box is a 4-tuple defining the left, upper, right, and

lower pixel coordinate.

im

This represent the image to crop.

PIL Image paste

Function

This function pastes another image into this image.

im.paste(image, box)

image

This the image to paste on im. In digibanner, it represents the

cropped face.

box

The box is a 4-tuple defining the left, upper, right, and lower pixel

coordinate. It represents the location to paste on the image

im

This represent the image to crop.

PIL Image save

Function

This function pastes another image into this image.

im.save(name)

name

This represent the directory and name of the image to

save.

im

This represent the image to crop.

SVN statement on

command line

Sync all the folders with all the clients in digibanner

using SVN so that all clients will have the image to

show when the bubble goes to the screen.

An example of this SVN command:

os.system("d:\\digibanner\\tools\\svn\\svn.exe add

*.png") os.system("d:\\digibanner\\tools\\svn\\svn.exe

commit *.png –m added_face")

References

OpenCV wiki
http://opencv.willowgarage.com

OPenCV Python Interface
http://opencv.willowgarage.com/documentation/python/index.html

Python Image Library wiki
http://www.pythonware.com/library/pil/handbook/index.htm

http://opencv.willowgarage.com/
http://opencv.willowgarage.com/documentation/python/index.html
http://www.pythonware.com/library/pil/handbook/index.htm

QUESTION ?

THANK YOU !

For more info contact

Neo Yong Sheng Linus

Gratuated Republic Polytechnic student

ys.linus.neo@gmail.com

Demonstration next !

mailto:ys.linus.neo@gmail.com

