
The Python Papers Monograph 2: 3

Proceedings of PyCon Asia-Pacific 2010

 - 1 -

Bactome, I: Python in DNA Fingerprinting

Chin-How Lee
1
, Kun-Cheng Lee

1
, Jack Si-Hao Oon

1
, Maurice HT Ling

1,2,3

1
School of Chemical and Life Sciences, Singapore Polytechnic

2
Department of Zoology, The University of Melbourne, Australia

3
Corresponding author: mauriceling@acm.org

Abstract

Bactome is a collection of Python functions to find primers suitable for DNA

fingerprinting, determine restriction digestion profile, and analyse the resulting

DNA fingerprint features as migration distance of the bands in gel electrophoresis.

An actual use case will be presented as a case study. These codes are licensed under

Lesser General Public Licence version 3.

1. Brief Case Scenario

Bactome is a collection of Python functions implemented out of need. Our research

project in question aimed to examine the genetic changes of a bacterium,

Escherichia coli, at different phases of an extended culture in a number of different

chemicals (Lee et al., 2010). The genetic changes can be identified using DNA

fingerprinting methods and can be visualized as different banding patterns on an

agarose gel. The DNA fingerprinting method chosen is Polymerase Chain Reaction

(PCR) (Welsh and McClelland, 1990), followed by Restriction Fragment Length

Polymorphism (RFLP). PCR is a method used to multiply the number of DNA

copies and its specificity (which part of the DNA to multiple) is determined by the

primers. Hence, we need to know what primers to use. After PCR, the amplified

DNA is cut using specific enzymes (known as restriction endonucleases) to generate

a banding pattern (known as a DNA fingerprint). This step is known as RFLP and

the types of enzymes to use, within a collection of more than 500, determines the

quality of the DNA fingerprint. After visualization, statistical analysis of the

banding patterns to illustrate genetic distance is needed.

There are a number of tools available for selecting common primers to amplify

different DNA templates, such as PrimerSNP (Yao et al., 2008) and SOP3v2

(Ringquist et al., 2005) or within a single template, such as Lowe et al. (1990), OSP

(Hillier and Green, 1991), BatchPrimer3 (You et al., 2008) and ConservedPrimers

2.0 (You et al., 2009). However, none of them fits our requirements as our strategy

calls for primers to generate a specific number of amplicons so that the resulting

restriction endonuclease digestion will be resolvable, and of visually resolvable sizes

so that the PCR product itself can be used as a fingerprint profile. Hence, we

decided to develop Bactome from BioPython (Cock et al., 2009).

The Python Papers Monograph 2: 3

Proceedings of PyCon Asia-Pacific 2010

 - 2 -

2. Primer Selection for Polymerase Chain Reaction

Primer design was performed to determine the suitable primer for Polymerase Chain

Reaction (PCR). The primer sequence obtained is used as forward and reverse

primer in each reaction. A string of DNA sequence is read using SeqIO class of

BioPython (Cock et al., 2009).

def fasta_seq(fasta='ATCC8739.fasta'):

"""

Open fasta format file and returns the sequence.

"""

 f = SeqIO.parse(open(fasta, 'rU'), 'fasta').next()

 return f.seq

Genome of the bacteria was scanned and cut into fragments of equal length.

def generate_fragments(seq, tablefile, fragment_size=15):

"""

Slice an entire sequence into fragments of equal lengths

Parameters:

 seq = sequence to be sliced (output from fasta_seq function)

 tablefile = name of file to store the sliced sequence

 fragment_size = length of each sequence to be sliced into.

This will be the maximum primer/probe length.

 Default value is 15 bases.

"""

 genome_fragment = anydbm.open(tablefile, 'c')

 last_start= len(seq) - fragment_size

 count = 0

 for start in range(0, last_start, fragment_size):

 genome_fragment[str(count)] = seq[start:15+start].data

 count = count + 1

 if (count % 1000) == 0:

 print str(count) + ' fragments inserted into ' \

+ tablefile

 print str(count) + ' fragments inserted into ' + tablefile

 genome_fragment.close()

The longest common substring (LCS) can be defined as the longest string

that is found in two or more strings (Bergroth et al., 2000) which is used

to identify common DNA sequences flanking a length of DNA. The length of DNA

to be flanked determines the size of amplicon (number of intervening fragments).

For example in a case scenario in Figure 1, the DNA flanked is 15 base pairs and is

represented by one block.

Figure 1: Schematic diagram to illustrate the amplicon size determination with respect to the length

of flanked DNA.

A B C D E

The Python Papers Monograph 2: 3

Proceedings of PyCon Asia-Pacific 2010

 - 3 -

Given that after LCS determination, block A and the inverse complement of block E

contain a LCS, the sequence of A and the inverse complement of E can be used as

primers. Therefore, the size of the amplicon would be 15 x 3 (B, C and D) = 45 base

pairs.

A minimum length of LCS needed is determined biologically as the LCS is to be

used as primers for PCR (Dieffenbach et al., 1993). The LCS results are tabulated as

a tuple of start fragment number, end fragment position and primer sequence.

def LCS(seq, test):

 """

 Finds the longest common substring between the 2 inputs (seq and

 test).

Adapted from http://en.wikibooks.org/wiki/Algorithm

_Implementation/Strings/Longest_common_substring

 """

 m = len(seq)

 n = len(test)

 L = [[0] * (n+1) for i in xrange(m+1)]

 LCS = set()

 longest = 0

 for i in xrange(m):

 for j in xrange(n):

 if seq[i] == test[j]:

 v = L[i][j] + 1

 L[i+1][j+1] = v

 if v > longest:

 longest = v

 LCS = set()

 if v == longest:

 LCS.add(seq[i-v+1:i+1])

 return LCS

def generate_all_LCS(fragfile, LCSfile, min_primer=7,

max_interval=198, min_interval=6):

 """

 Generates primers where forward primer sequence = reverse primer

 Sequence given the size of amplicon and minimum length of

 primers.

 Parameters:

 fragfile = file of sliced sequence (tablefile parameter of

 generate_fragments function)

 LCSfile = name of file to store least common substrings'

 (primers) data

 min_primer = smallest acceptable length for primers

 max_interval = number of maximum fragment intervals between

 2 primers. This value is determines the maximum length

 of amplicon generated and is determined by the length of

 each sliced fragment.

 Default value is 198 as 3000bp amplicon is the maximum

 Normal Taq polymerase can amplify. 198 intervals of 15

 bases per fragment + 2 flanking fragment of maximum of

 15 bases (primer length) gives a total of 200 fragments

The Python Papers Monograph 2: 3

Proceedings of PyCon Asia-Pacific 2010

 - 4 -

 of 15 bases = 3000 bases.

 min_interval = number of minimum fragment intervals between

 2 primers. This value is determines the maximum length

 of amplicon generated and is determined by the length of

 each sliced fragment.

 Default value is 6 as 120bp amplicon is the minimum

 length visible on 1.5% agarose gel that is also suitable

 for 3000 bp. 6 intervals of 15 bases per fragment + 2

 flanking fragment of maximum of 15 bases (primer length)

 gives a total of 8 fragments of 15 bases = 120 bases.

 """

genome_fragment = anydbm.open(fragfile, 'c')

 num_of_frag = len(genome_fragment)

 num_analyzed = 0

 result = {}

 fragment_size = len(genome_fragment['0'])

 for size in range(max_interval, min_interval, -1):

 com_seq = anydbm.open(LCSfile, 'c')

 print 'Analysing for ' + str(fragment_size * size) + \

'bp amplicons'

 num_com = 0

 for frag in range(0, num_of_frag - size):

 p1 = genome_fragment[str(frag)]

 p2 = genome_fragment[str(frag+size)]

 p2 = Seq(p2, generic_dna).reverse_complement().data

 try: common_seq = LCS(p1, p2).pop()

 except : common_seq = ''

 num_analyzed = num_analyzed + 1

 if len(common_seq) > min_primer:

 com_seq['|'.join([str(frag), str(frag+size),

 str(size)])] = common_seq

 num_com = num_com + 1

 if (num_analyzed % 10000) == 0:

 print str(num_analyzed) + ' pairs analyzed'

 print ' ' + str(num_com) + ' LCS more than ' + \

 str(min_primer) + 'bp for ' + \

 str(15 * size) + 'bp amplicons'

 com_seq.close()

 result[size] = str(num_com)

 print str(num_analyzed) + ' pairs analyzed'

 print ' ' + str(num_com) + ' LCS more than ' +

str(min_primer)+ 'bp for ' + str(15 * size) + 'bp amplicons'

 genome_fragment.close()

 return result

For easier analysis of the primer sequence, Inversion of the LCS list (index of LCS)

was performed to classify into primer sequence with start fragment position, end

fragment position and amplicon size. This requires marshaldbm class (Ling, 2010),

an object-marshallable anydbm module that enables objects to be stored as values in

an anydbm file.

def get_LCS_by_amplicon(LCSfile, amplicon_size):

 """

 Extract all the primers and amplicon positions from the LCSfile

 given the amplicon length.

The Python Papers Monograph 2: 3

Proceedings of PyCon Asia-Pacific 2010

 - 5 -

 Parameters:

 LCSfile = file of least common substrings' (primers) data

 amplicon_size = size of amplified product in terms of number

 of fragments intervening 2 primers. For example, if the

 fragment size is 15 and the amplicon size is 60, we are

 then looking for primers (forward primer sequence =

 reverse primer sequence) that gives amplicons of 900 bp

 (60*15) excluding the flanking primers.

 Returns:

 (List of primers,

 List of amplicons' data)

 where

 1. each data element in "List of amplicons' data" is in the

 format of '<start fragment position>|<end fragment

 position>|<amplicon size>’, <start fragment position> and

 <end fragment position> multiplied by the fragment size

 will give the corresponding position on the fasta

 sequence. For example, '89572|89632|60' represents the

 amplicon from 1343580 bp (889572*15) to 1344480 bp

 (89632*15) of the fasta sequence, corresponding to an

 amplicon size of 900bp (60*15).

 2. the number of primers = number of primers's data. This

 means that in primers =

 get_LCS_by_amplicon('primer.table', 60) primers[0][10]

 sequence will amplify primers[1][10]

 """

 com_seq = anydbm.open(LCSfile, 'c')

 keys = com_seq.keys()

 return ([com_seq[x] for x in keys

 if x.split('|')[2] == str(amplicon_size)],

 [x for x in keys

 if x.split('|')[2] == str(amplicon_size)])

def inverse_LCS(LCSfile, inverseLCSfile, max_interval=198,

min_interval=6, fragment_size=15):

 """

 Generates the index file of LCSfile.

 Format of LCSfile: <start fragment position>|

 <end fragment position>|

 <amplicon size> = <primer sequence>

 Format of inverseLCSfile: <primer sequence> =

 [<start fragment position>|

 <end fragment position>|

 <amplicon size>, ...]

 Parameters:

 LCSfile = file of least common substrings' (primers) data

 inverseLCSfile = name of file to store the index of LCSfile

 max_interval = number of maximum fragment intervals between

 2 primers. This value is determines the maximum length

 of amplicon generated and is determined by the length of

 each sliced fragment. Default value is 198 as 3000bp

 amplicon is the maximum normal Taq polymerase can

 amplify. 198 intervals of 15 bases per fragment + 2

 flanking fragment of maximum of 15 bases (primer length)

The Python Papers Monograph 2: 3

Proceedings of PyCon Asia-Pacific 2010

 - 6 -

 gives a total of 200 fragments of 15 bases = 3000 bases.

 min_interval = number of minimum fragment intervals between

 2 primers. This value is determines the maximum length

 of amplicon generated and is determined by the length of

 each sliced fragment. Default value is 6 as 120bp

 amplicon is the minimum length visible on 1.5% agarose

 gel that is also suitable for 3000 bp. 6 intervals of 15

 bases per fragment + 2 flanking fragment of maximum of

 15 bases (primer length) gives a total of 8 fragments of

 15 bases = 120 bases.

 fragment_size = length of each sequence to be sliced into.

 This will be the maximum primer/probe length.

 Default value is 15 bases.

 """

 inverseLCSfile = marshaldbm(inverseLCSfile, 'c')

 count = 0

 for amplicon_size in range(max_interval, min_interval, -1):

 seq, pos = get_LCS_by_amplicon(LCSfile, amplicon_size)

 print 'Processing for amplicon size of ' + \

 str(amplicon_size*fragment_size)

 for index in range(len(seq)):

 count = count + 1

 try:

 temp = inverseLCSfile[seq[index]]

 inverseLCSfile[seq[index]] = temp + [pos[index]]

 except KeyError:

 inverseLCSfile[seq[index]] = [pos[index]]

 if (count % 1000) == 0:

 print str(count) + ' LCS processed'

 print str(count) + ' LCS processed'

 inverseLCSfile.close()

This function, generate_primers_from_fasta, wraps around the above function as a

one-step solution to generate all possible primers (LCS).

def generate_primers_from_fasta(fasta='ATCC8739.fasta',

 genome_fragment='genome_fragment.table',

 max_primer_length=15,

 min_primer_length=7,

 max_amplicon_length=3100,

 min_amplicon_length=300,

 primer_file='primer.table',

inverse_primer_file='invprimer.table'):

 """

 Generate a file of primers with amplicon size and genomic

 position from the Fasta sequence file.

 Parameters:

 fasta = name of fasta file to process

 genome_fragment = name of file to store the sliced sequence.

 Default = 'genome_fragment.table'

 max_primer_length = maximum length of primer (fragment size

 of genome slices). Default = 15 bp

 min_primer_length = minimum length of primer. Default = 7 bp

 max_amplicon_length = maximum size of amplicon. Default =

 3100 bp

The Python Papers Monograph 2: 3

Proceedings of PyCon Asia-Pacific 2010

 - 7 -

 min_amplicon_length = minimum size of amplicon. Default =

 300 bp

 primer_file = file of least common substrings' (primers)

 data. Default = 'primer.table'

 inverse_primer_file = name of primers index file.

 Default = 'invprimer.table'

 Output files:

 1. genome fragment file from 'generate_fragments' function

 2. primer file from 'generate_all_LCS' function

 3. inverse primer file from 'inverse_LCS' function

 """

 seq = fasta_seq(fasta)

 generate_fragments(seq, genome_fragment,

fragment_size=max_primer_length)

 generate_all_LCS(genome_fragment, primer_file,

 min_primer_length,

 int(max_amplicon_length/max_primer_length),

 int(min_amplicon_length/max_primer_length))

 inverse_LCS(primer_file, inverse_primer_file,

 int(max_amplicon_length/max_primer_length),

 int(min_amplicon_length/max_primer_length),

 max_primer_length)

Once LCS index file is generated, suitable primers (LCS) can be searched based on

the number of amplicons (dictionary values) and the melting point of the primer

(deduced from the LCS).

def look_for_primers(inverseLCSfile, num_of_amplicons, min_tm,

p='yes'):

 """

 Scans the LCSfile index for primer(s) that amplifies a given

 number of amplicons. The primer must not end with adenosine and

 thymidine, and must meet minimum annealing temperature.

 Parameters:

 inverseLCSfile = name of LCSfile index file

 num_of_amplicons = number of amplicons generated by required

 primer(s)

 min_tm = minimum annealing temperature (in degrees

 centigrade) of primers. Calculated as 2AT + 4GC.

 p = flag to determine if data is to be printed. Default =

 yes

 Returns:

 List of primers meeting the criteria

 """

 f = marshaldbm(inverseLCSfile, 'c')

 keys = f.keys()

 primers = []

 for k in keys:

 temperature = 4*(k.count('G')+k.count('C')) + \

 2*(k.count('A')+k.count('T'))

 if (len(f[k])) == num_of_amplicons and \

 temperature > min_tm-1 and \

 not k.endswith('A') and not k.endswith('T'):

The Python Papers Monograph 2: 3

Proceedings of PyCon Asia-Pacific 2010

 - 8 -

 primers.append(k)

 if p == 'yes':

 print k

 print f[k]

 print

 return primers

We consider the possibility of cases whereby we are interested in primers that only

give us one amplicon (LCS_uniqueness) or primers giving the same amplicon size

(LCS_tabulate).

def LCS_uniqueness(LCSfile, amplicon_size):

 """

 Extract all the primers and amplicon positions from the LCSfile

 given the amplicon length and groups the primers into 2 groups:

 those that only yield one amplicon and those that yield more

 than one amplicons.

 Parameters:

 LCSfile = file of least common substrings' (primers) data

 amplicon_size = size of amplified product in terms of number

 of fragments intervening 2 primers. For example, if the

 fragment size is 15 and the amplicon size is 60, we are

 then looking for primers (forward primer sequence =

 reverse primer sequence) that gives amplicons of 900 bp

 (60*15) excluding the flanking primers.

 Returns:

 (List of unique primers,

 List of non-unique primers)

 where 'List of unique primers' are primers amplifying only

 one amplicon, and 'List of non-unique primers' is a tuple of

 'number of amplicons' and primer sequence.

 """

 LCS = get_LCS_by_amplicon(LCSfile, amplicon_size)[0]

 unique_LCS = [x for x in LCS

 if LCS.count(x) == 1]

 non_unique_LCS = list(set([(LCS.count(x), x) for x in LCS

 if LCS.count(x) > 1]))

 return (unique_LCS, non_unique_LCS)

def LCS_tabulate(LCSfile, max_interval=198, min_interval=6,

 fragment_size=15, p='yes'):

 """

 Provides a tabulation of the given LCSfile, grouped by amplicon

 size.

 Parameters:

 LCSfile = file of least common substrings' (primers) data

 max_interval = number of maximum fragment intervals between

 2 primers. This value is determines the maximum length

 of amplicon generated and is determined by the length of

 each sliced fragment. Default value is 198 as 3000bp

 amplicon is the maximum normal Taq polymerase can

 amplify. 198 intervals of 15 bases per fragment + 2

 flanking fragment of maximum of 15 bases (primer length)

The Python Papers Monograph 2: 3

Proceedings of PyCon Asia-Pacific 2010

 - 9 -

 gives a total of 200 fragments of 15 bases = 3000 bases.

 min_interval = number of minimum fragment intervals between

 2 primers. This value is determines the maximum length

 of amplicon generated and is determined by the length of

 each sliced fragment. Default value is 6 as 120bp

 amplicon is the minimum length visible on 1.5% agarose

 gel that is also suitable for 3000 bp. 6 intervals of 15

 bases per fragment + 2 flanking fragment of maximum of

 15 bases (primer length) gives a total of 8 fragments of

 15 bases = 120 bases.

 fragment_size = length of each sequence to be sliced into.

 This will be the maximum primer/probe length. Default

 value is 15 bases.

 p = flag to determine if the tabulation data is to be

 printed. Default = yes

 """

 result = {}

 for amplicon_size in range(max_interval, min_interval, -1):

 (unique_LCS, non_unique_LCS) = \

LCS_uniqueness(LCSfile, amplicon_size)

 if p == 'yes':

 print 'Longest Common Substring (primer) for amplicon \

 size of ' + str(amplicon_size*fragment_size)

 print 'Unique Primers (only one amplicon). N = ' + \

 str(len(unique_LCS))

 print ' '.join(unique_LCS)

 print

 print 'Non-Unique Primers (more than one amplicon)'

 print '\t'.join(['# amplicons', 'Primer sequence'])

 for lcs in non_unique_LCS:

 print '\t\t'.join([str(lcs[0]), lcs[1]])

 print

 print

 result[str(amplicon_size)] = (unique_LCS, non_unique_LCS)

 return result

3. Generating Virtual Restriction Digest Profile

Restriction enzyme cuts a specific region in the genome which can indicate the

presence of certain sequence in the genome (a string of DNA letters). If there is

mutation at the cutting region, the same restriction enzyme cannot cut the same site

anymore as the sequence is changed resulting the decrease in number of fragment. In

exchange, the restriction enzyme may be able to cut other regions in the genome

results in more fragments generation and also the mutated cutting site can now be

cut by another restriction site. This function “digests” the genome virtually which

allows us to see the expected fragments and also tells us the restriction enzyme that

is able to cut the genome, which in turn can be used to select restriction enzyme to

purchase for following laboratory experiments. This function uses Biopython (Cock

et al., 2009) for the restriction enzyme cutting site then it scans the cutting site in the

genome. If it is able to find the cutting site in the genome this indicates the

restriction enzyme is able to be used for RFLP. It returns the location and number of

cutting site for the restriction enzyme and the length of fragment generated by

The Python Papers Monograph 2: 3

Proceedings of PyCon Asia-Pacific 2010

 - 10 -

restriction enzyme. This tool can also be used for microsatellite and single

nucleotide polymorphisms detection and gene mapping.

def restriction_digest(seq, enzyme, max_band=23130, min_band=2000,

 linear=False, p='yes'):

 """

 Performs restriction endonuclease digestion on a sequence and

 group the resulting fragments into 3 groups so simulate

 different agarose gel electrophoresis:

 1. fragment length more than the maximum size

 2. fragment length between the maximum and minimum size

 3. fragment length less than the minimum size

 Parameters:

 seq = DNA sequence for restriction endonuclease digestion

 enzyme = Restriction endonuclease object from

 Bio.Restriction package

 max_band = size of maximum band in basepairs. Default =

 23130

 min_band = size of minimum band in basepairs. Default = 2000

 linear = flag to define if DNA sequence is linear.

 Default = False (DNA is circular)

 p = flag to determine if the data is to be printed. Default

 = yes

 Result:

 (Number of fragments after digestion,

 List of fragments with molecular size above max_band,

 List of fragments with molecular size between max_band and

 min_band, List of fragments with molecular size below

 min_band)

 """

 digest = enzyme.search(seq, linear=linear)

 digest.sort()

 fragment = [digest[x+1] - digest[x]

 for x in range(len(digest) - 1)]

 fragment.sort()

 ogel = [x for x in fragment if x > max_band]

 gel = [x for x in fragment if x <= max_band and x >= min_band]

 ugel = [x for x in fragment if x < min_band]

 ogel.sort()

 gel.sort()

 ugel.sort()

 if p == 'yes':

 print 'Enzyme: ' + str(enzyme)

 print 'Restriction site: ' + enzyme.site

 print 'Number of fragments: ' + str(len(fragment))

 print 'Number of fragments (x > ' + str(max_band) + '): ' \

+ str(len(ogel))

 print 'Number of fragments (' + str(max_band) + ' < x < ' \

+ str(min_band) + '): ' + str(len(gel))

 print 'Number of fragments (x < ' + str(min_band) + '): ' \

+ str(len(ugel))

 print

 return (len(fragment), ogel, gel, ugel)

The Python Papers Monograph 2: 3

Proceedings of PyCon Asia-Pacific 2010

 - 11 -

def restriction_supplier(seq, max_band=23130, min_band=2000,

 suppliers='ACEGFIHKJMONQPSRUVX',

 linear=False, p='yes'):

 """

 Performs restriction endonuclease analysis by batch, based on

 supplier.

 Parameters:

 seq = DNA sequence for restriction endonuclease digestion

 max_band = size of maximum band in basepairs.

 Default = 23130

 min_band = size of minimum band in basepairs.

 Default = 2000

 suppliers = restriction enzyme supplier.

 Default = ACEGFIHKJMONQPSRUVX

 where

 A = Amersham Pharmacia Biotech

 C = Minotech Biotechnology

 E = Stratagene

 G = Qbiogene

 F = Fermentas AB

 I = SibEnzyme Ltd.

 H = American Allied Biochemical, Inc.

 K = Takara Shuzo Co. Ltd.

 J = Nippon Gene Co., Ltd.

 M = Roche Applied Science

 O = Toyobo Biochemicals

 N = New England Biolabs

 Q = CHIMERx

 P = Megabase Research Products

 S = Sigma Chemical Corporation

 R = Promega Corporation

 U = Bangalore Genei

 V = MRC-Holland

 X = EURx Ltd.

 linear = flag to define if DNA sequence is linear.

 Default = False (DNA is circular)

 p = flag to determine if the data is to be printed.

 Default = yes

 Returns:

 {Restriction endonuclease :

 (Total number of fragments after digestion,

 Number of fragments with molecular size above max_band,

 Number of fragments with molecular size between max_band and

 min_band,

 Number of fragments with molecular size below min_band)}

 """

 from Bio.Restriction import RestrictionBatch

 count = 0

 result = {}

 for enzyme in RestrictionBatch(first=[],

 suppliers=[x.upper()

 for x in suppliers]):

 try:

The Python Papers Monograph 2: 3

Proceedings of PyCon Asia-Pacific 2010

 - 12 -

 digest = restriction_digest(seq, enzyme, max_band,

min_band, linear, p)

 except MemoryError:

 print 'Memory Error during ' + str(enzyme) + \

' digestion'

 result[str(enzyme)] = (digest[0], len(digest[1]),

 len(digest[2]), len(digest[3]))

 count = count + 1

 if p != 'yes':

 if count % 10 == 0:

 print str(count) + ' restriction \

endonuclease processed'

 return result

4. Analysing DNA Fingerprint Profiles

This function analyses the migrated distance of the bands in gel electrophoresis

using the method to calculate dissimilarity developed by Nei and Li (1979).

Dissimilarity index = 1 - [2 x (number of regions where both species are present)/

[(2 x (number of regions where both species are present)) + (number of regions

where only one species is present)]]. There are 2 types of comparison: set and list.

Set comparison is used for processing set-based (unordered or nominal) distance of

categorical data. List comparison is used for processing list-based (ordered or

ordinal) distance of categorical data. For our experiment, list comparison is

preferred. It compares the band migrated distance for one sample (original) to

another sample (test). If the bands are similar it returns zero dissimilarity index. On

the other hand, if the band at that certain distance only appears on of the sample, it

will return the Dissimilarity Index (DI).

def setCompare(original, test, absent):

 """

 Used for processing set-based (unordered or nominal) distance of

 categorical data.

 Parameters:

 original: list of original data

 test: list of data to test against original

 absent: indicator to define absent data

 """

 original_only = float(len([x for x in original

if x not in test]))

 test_only = float(len([x for x in test if x not in original]))

 both = float(len([x for x in original if x in test]))

 return (original_only, test_only, both)

def listCompare(original, test, absent):

 """

 Used for processing list-based (ordered or ordinal) distance of

 categorical data.

 Parameters:

 original: list of original data

The Python Papers Monograph 2: 3

Proceedings of PyCon Asia-Pacific 2010

 - 13 -

 test: list of data to test against original

 absent: indicator to define absent data

 """

 original = list(original)

 test = list(test)

 original_only = 0.0

 test_only = 0.0

 both = 0.0

 for i in range(len(original)):

 if original[i] == absent and test[i] == absent:

pass

 elif original[i] == test[i]:

both = both + 1

 elif original[i] <> absent and test[i] == absent:

 original_only = original_only + 1

 elif original[i] == absent and test[i] <> absent:

 test_only = test_only + 1

 else: pass

return (original_only, test_only, both)

def Nei_Li(original, test, absent=0, type='Set'):

 """

 Nei and Li Distance is distance measure for nominal or ordinal

 data.

 Given 2 lists (original and test), calculates the Nei and Li

 Distance based on the formula,

 1 - [2 x (number of regions where both species are present)/

 [(2 x (number of regions where both species are present)) +

 (number of regions where only one species is present)]]

 Nei M, Li WH (1979) Mathematical models for studying

 Genetic variation in terms of restriction endonucleases.

 Proc Natl Acad Sci USA 76:5269-5273

 Paraemeters:

 original: list of original data

 test: list of data to test against original

 absent: user-defined identifier for absent of region,

 default = 0

 type: (Dieffenbach et al., 1993), define whether use Set

comparison

 (unordered) or list comparison (ordered), default = Set

 """

 if type == 'Set':

 (original_only, test_only, both) = setCompare(original,

test, absent)

 else:

 (original_only, test_only, both) = listCompare(original,

test, absent)

 return 1-((2*both)/((2*both)+original_only+test_only))

The Python Papers Monograph 2: 3

Proceedings of PyCon Asia-Pacific 2010

 - 14 -

5. Case Study

We developed Bactome to cater to the needs of our research work (Lee et al., 2010),

briefly described in Section 1, on the effects of food additives on the genome of

Escherichia coli, a common intestinal bacterium. Three additives were chosen for

study, namely, sodium chloride (table salt), benzoic acid (BA; a common food

preservative), and monosodium glutamate (MSG; a common taste enhancer). Two

concentrations of each additives (H MSG, high MSG; L MSG, low MSG; H BA,

high BA; L BA, low BA; H SALT, high salt; L SALT, low salt) and two

combination additives (H COMB, combining all the high concentration additives; L

COMB, combining all the high concentration additives) were used.

The strain of E. coli used was ATCC 8739. It was chosen as its entire genome had

been sequenced which enables efficient primer selection for PCR-based DNA

fingerprinting. The genome of E. coli ATCC 8739 is about 4.7 megabases.

The entire genome is processed by generate_primers_from_fasta function. Firstly, a

total of 316414 fragments of 15 bases each is generated as the primer length for

DNA fingerprinting ranges from 6 to 15 bases. Secondly, longest common

substrings were identified as potential primers using a sliding window of 20 (300

bases) to 207 (3105 bases) fragment sizes. This generated a total of 38105 potential

primers. Lastly, 8 primers were selected based on one of the two criteria – either the

primer has a melting temperature of at least 35
o
C and yields 3 amplicons or a

melting temperature of at least 33
o
C and yields 4 amplicons. The choice of

temperature is to enable efficient PCR whereas the choice of number of amplicons is

to enable resolution in the visualization after digestion by restriction endonuclease.

Each amplicon can be virtually digested using restriction_digestion function and

combined to simulate the resulting DNA fingerprint.

Each column in Figure 2 is a DNA fingerprint from one sample and each band in

within the column represents a feature. Each DNA fingerprint can represented as a

Python list of position of each bands. After which, DI can be used to calculate the

distances between any 2 samples within all 8 samples as tabulated in Figure 3.

Computationally, the successful generation of DNA fingerprints using primers

selected by Bactome demonstrated the reliability and correctness of implementation.

Biologically, the distance calculated among any of the samples using DI suggested

that E. coli underwent genetic changes after extended culture in the presence of

MSG, benzoic acid and table salt, both singly and in combination. This is because

the initial culture of the treatments originates from the same ancestor and therefore

any increment in distance among the samples is indicative of genetic changes.

The Python Papers Monograph 2: 3

Proceedings of PyCon Asia-Pacific 2010

 - 15 -

The use of Python has allowed us to

save time during data analysis of

huge amounts of data. Designing

primers of 15 bases to amplify

specific number of times and of

specific lengths from the entire

sequence of Escherichia coli ATCC

8739 would be physically impossible

to achieve within a short amount of

time by skimming through the

sequences visually. Our success with

primer selection prompted us to use

Python to automate tedious

calculations of Dissimilarity Index

for all 576 DNA fingerprint profiles

(2016 permutations) in the entire

projects. The calculation was done in

a matter of seconds not forgetting

that human errors in calculations are

totally removed. In summary, Python

has been an invaluable tool for us.

H MSG 0

L MSG 0.120 0

H BA 0.120 0.182 0

L BA 0.077 0.217 0.130 0

H SALT 0.333 0.222 0.222 0.263 0

L SALT 0.120 0.182 0.091 0.130 0.222 0

H COMB 0.077 0.217 0.130 0.083 0.263 0.130 0

L COMB 0.167 0.238 0.048 0.091 0.176 0.143 0.091 0

 H MSG L MSG H BA L BA H SALT L SALT H COMB L COMB

Figure 3: Nei and Li Distance Matrix Generated from Figure 2.

M
ar

k
er

H
 M

S
G

L
 M

S
G

H
 B

A

L
 B

A

H
 S

A
L

T

L
 S

A
L

T

H
 C

O
M

B

L
 C

O
M

B

2.4 3.8 3.8 3.8 3.8 3.8 3.8

2.8 4.0 4.0 4.0

3.2 4.1 4.1 4.1

4.1 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2

4.3 4.4 4.4 4.4 4.4

4.6 5.0 5.0 5.0 5.0 5.0 5.0 5.0

5.7 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4

 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9

 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0

 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4

 6.5 6.5 6.5 6.5 6.5

 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8

 7.2 7.2 7.2 7.2

 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3

Figure 2: DNA Fingerprint after PCR and

Restriction Endonuclease Digestion. Each vertical

column in the image is a fingerprint and its

features are tabulated below each visualized

profile. The shaded boxes represents a lack of the

particular feature

The Python Papers Monograph 2: 3

Proceedings of PyCon Asia-Pacific 2010

 - 16 -

Acknowledgements

We would like to express gratitude to Singapore Totalisation Board and Singapore

Polytechnic for funding this research (Grant Account: 11-27801-45-2672).

6. References

BERGROTH, L., HANKONEN, H. & RAITA, T. (2000) A survey of longest

common subsequence algorithms. Proceedings of the Seventh International

Symposium on String Processing Information Retrieval (SPIRE’00), 39–48.

COCK, P. J., ANTAO, T., CHANG, J. T., CHAPMAN, B. A., COX, C. J., DALKE,

A., FRIEDBERG, I., HAMELRYCK, T., KAUFF, F., WILCZYNSKI, B. & DE

HOON, M. J. (2009) Biopython: freely available Python tools for computational

molecular biology and bioinformatics. Bioinformatics, 25, 1422-3.

DIEFFENBACH, C. W., LOWE, T. M. J. & DVEKSLER, G. S. (1993) General

concepts for PCR primer design. Genome Res., 3, S30-S37.

HILLIER, L. & GREEN, P. (1991) OSP: a computer program for choosing PCR and

DNA sequencing primers. PCR Methods Appl, 1, 124-8.

LEE, C.H., LEE, K.C., OON, J.S.H. & LING, M.H.T. (2010) Evolution

Characterization of Escherichia coli Using RFLP DNA Fingerprinting. Diploma in

Biotechnology Final Year Project. School of Chemical and Life Sciences, Singapore

Polytechnic, Singapore.

LING, M.H.T. (2010) Recipe 577003: Extending anydbm with marshal. ActiveState

Python Cookbook. [Last accessed: 12 January 2010; http://code.activestate.com/

recipes/577003/]

LOWE, T., SHAREFKIN, J., YANG, S. Q. & DIEFFENBACH, C. W. (1990) A

computer program for selection of oligonucleotide primers for polymerase chain

reactions. Nucleic Acids Res, 18, 1757-61.

NEI, M. & LI, W. H. (1979) Mathematical model for studying genetic variation in

terms of restriction endonucleases. Proc Natl Acad Sci U S A, 76, 5269-73.

RINGQUIST, S., PECORARO, C., GILCHRIST, C. M., STYCHE, A., RUDERT,

W. A., BENOS, P. V. & TRUCCO, M. (2005) SOP3v2: web-based selection of

oligonucleotide primer trios for genotyping of human and mouse polymorphisms.

Nucleic Acids Res, 33, W548-52.

SEZONOV, G., JOSELEAU-PETIT, D. & D’ARI, R. (2007) Escherichia coli

Physiology in Luria-Bertani Broth. Journal of Bacteriology, 189, 8746–8749.

The Python Papers Monograph 2: 3

Proceedings of PyCon Asia-Pacific 2010

 - 17 -

WELSH, J. & MCCLELLAND, M. (1990) Fingerprinting genomes using PCR with

arbitrary primers. Nucleic Acids Res, 18, 7213-8.

YAO, J., LIN, H., VAN DEYNZE, A., DODDAPANENI, H., FRANCIS, M.,

LEMOS, E. G. & CIVEROLO, E. L. (2008) PrimerSNP: a web tool for whole-

genome selection of allele-specific and common primers of phylogenetically-related

bacterial genomic sequences. BMC Microbiol, 8, 185.

YOU, F. M., HUO, N., GU, Y. Q., LUO, M. C., MA, Y., HANE, D., LAZO, G. R.,

DVORAK, J. & ANDERSON, O. D. (2008) BatchPrimer3: a high throughput web

application for PCR and sequencing primer design. BMC Bioinformatics, 9, 253.

YOU, F. M., HUO, N., GU, Y. Q., LAZO, G. R., DVORAK, J. & ANDERSON, O.

D. (2009) ConservedPrimers 2.0: a high-throughput pipeline for comparative

genome referenced intron-flanking PCR primer design and its application in wheat

SNP discovery. BMC Bioinformatics, 10, 331.

I. Appendix I: Code to Calculate Nei and Li Distance Matrix

From Bactome import Nei_Li

profile = [[3.8, 4.0, 4.1, 4.2, 4.4, 5.0, 5.4,

5.9, 6.0, 6.4, 6.5, 6.8, 7.2, 7.3],
 [4.0, 4.1, 4.2, 5.0, 5.4, 5.9, 6.0, 6.4, 6.8, 7.2, 7.3],
 [3.8, 4.2, 5.0, 5.4, 5.9, 6.0, 6.4, 6.5, 6.8, 7.2, 7.3],
 [3.8, 4.0, 4.2, 4.4, 5.0, 5.4,

5.9, 6.0, 6.4, 6.5, 6.8, 7.3],
 [4.2, 5.4, 5.9, 6.0, 6.4, 6.8, 7.3],
 [3.8, 4.2, 4.4, 5.0, 5.4, 5.9, 6.0, 6.4, 6.8, 7.2, 7.3],
 [3.8, 4.1, 4.2, 4.4, 5.0, 5.4, 5.9,

6.0,6.4, 6.5, 6.8, 7.3],
 [3.8, 4.2, 5.0, 5.4, 5.9, 6.0,6.4, 6.5, 6.8, 7.3]]

distance = [(p1, p2, Nei_Li(profile[p1], profile[p2]))
 for p1 in range(len(profile))
 for p2 in range(len(profile))]

print distance

